# SAN FRANCISCO BAY AREA WATER EMERGENCY TRANSPORTATION AUTHORITY

#### Terminal Dredging: Vallejo and South San Francisco RFP Document #18-015

# ADDENDUM NO. 1

July 17, 2018

#### <u>SCOPE</u>

This Addendum No. 1 consists of 3 pages with 5 attachments. It includes the following:

- 1. Attendee sign-in sheet for the Pre-Proposal Conference held on July 10, 2018.
- 2. Corrections
- 3. Question asked to date with response.
- 4. Attachments.

This addendum has been listed on WETA's web site for review to all potential bidders.

#### 1. ATTENDEE LIST

See Attachment 1 for the attendance sign-in sheet for the Pre-Proposal Conference and site walk held on July 10, 2018.

#### 2. CORRECTIONS

- 1. Sealed bids will be received by the Operations Manager of the San Francisco Bay Area Water Emergency Transportation Authority at Pier 9, Suite 111, San Francisco, CA 94111 until 2:00 p.m. on July 19, 2018 July 24, 2018, at which time bids will be publicly opened and read.
- Invitation for Bid 00100; Add the following: Contractors wishing to visit the site shall schedule and coordinate the visit in advance with the San Francisco Bay Ferry Vallejo Operations Manager, Peter Belden [telephone number (415)850-0413]. The visit shall solely be for contractor access and viewing purposes. Questions will not be answered during these site visits.
- 3. Section 00001 -- Order of Work; 1.1.B.5 -- Replace with the following: 5. Install temporary passenger loading float four (4) pilit
  - Install temporary passenger loading float, four (4) pilings, gangway, new Contractor furnished portal and gate assembly, and railing structures, all utilities and data connections, and electrical system for temporary boarding facility. Coordinate with WETA to ensure that the Clipper terminals on the temporary passenger loading float are fully operational. Contractor shall perform the following work:
    - Extend power and data lines, using temporary conduit, from the head of the permanent gangway to the appropriate utility connection points on the spare passenger float.

- Coordinate with WETA personnel and the ODR to test functionality of power and data feeds to the Clipper system on the temporary passenger loading float.
- 4. Section 42131 Vallejo Passenger Float and Gangway; Add the following:
  - Add to Paragraph 6.D The Contractor shall remove and dispose of all components associated with the old roll up gate at the float end of the existing gangway.
  - Add to Paragraph 7.A Surface preparation and painting shall include all steel structures compromising the permanent gangway portal and pile cap structures.
  - Add to Paragraph 11.B The design provided in Attachment 2 (Appendix 1) is not a complete design and complete design shall be the responsibility of the Contractor.
  - Add New Paragraph 12.G Following painting of the roof structures on the permanent float and permanent gangway, the Contractor shall install plastic bird spike strips continuously along the top ridge of all roof sections.

#### 3. QUESTION AND ANSWER

- Q1: When reviewing the various documents for the Terminal Dredging Vallejo and South San Francisco, Attachment B - PERMITS, as downloaded from the WETA website, consists of 67 pages, the last page of which is entitled Exhibit A - Figure 1: Site Location Map Vallejo Ferry Terminal Dredging Project, but there does not appear to be a Figure 1: Site Location Map Vallejo Ferry Terminal Dredging Project. Please clarify if there is to be such a Site Map, and if so, please provide it.
- A1: The Site Location Map is shown within the USACE Permit for reference.
- Q2: I thought that the sediment analyses was going to be back on Wednesday and would be forwarded. Is this available now?
- A2: See Attachment 4 for the Vallejo Ferry Terminal; Sample Logs (Attachment 5) are available for the South San Francisco Ferry Terminal, however the sediment results are still under review.
- Q3: Is it permissible to submit our DB/SBE goodfaith effort electronically (ie a CD), rather than a paper copy?
- A3: No, electronic submittals are not permitted.
- Q4: Section 42131 in Volume 3, page 71 of 79 Indicates that 16 LED lights get replaced and to reuse the existing mounting boxes, but the original referenced plans indicate a different number of lights. Which 16 lights get replaced?
- A4: The ODR will identify which 16 lights that are to be replaced.
- Q5: Section 00001, in Volume 2, page 3 says,
  - Provide and install four (4) new Clipper reader pedestals on the temporary passenger float at locations determined by the ODR.
  - Remove Clipper heads, wiring, and other components from the permanent passenger loading float to the temporary passenger loading float and install them in an existing electrical box for use, including new conduit and fittings between the existing Clipper box and the new pedestals.

Please review and explain if these Clipper heads are new or to be reused. If new please provide drawing and specifications for the 4 clipper card readers and new pedestals. The new float drawings appear to show them on the deck.

A5: The Contractor will not be required to perform any work regarding the Clipper reader pedestals or heads. The Contractor shall extend power and communications cabling, in conduit, from the head of the permanent gangway to the temporary passenger float and coordinate with WETA and the ODR to demonstrate that the power and communications extensions support the use of

Clipper on the temporary float for the duration of dredging. Following completion of use of the temporary passenger loading float the Contractor shall pull back the power and communications cabling and reconnect all back to the new Contractor installed Clipper control cabinet located on the permanent passenger loading float.

#### Q6: Section 01200, Volume 2 Page 21 of 52 e. says:

e. Fabrication and installation of a new portal and gate assembly at the head of the temporary passenger loading gangway, equal in the construction details and operability to the existing interior portal and gate at the permanent boarding gangway.

This statement is too vague and does not provide enough details as to what is required. Please provide additional information so that all bidders are bidding on the same project.

- A6: The required details can be determined through site visits by Bidders to inspect existing facilities and by holding discussions with the operating personnel.
- Q7: Provide bulkhead drawing for location of new portal so mounting can be determined. We are understanding that the alternate portal will be left in place at the completion of the project? Please clarify.
- A7: These drawings do not exist. Bidders should conduct site visits and inspect the existing facilities and hold discussions with the operating personnel in order to gain the required information. The new portal to be built and installed at the head of the temporary gangway will not be left in place. The new portal shall be removed after ferry operations have transferred back to the permanent ferry float and gangway. The promenade railings shall be restored to the same condition they were prior to the start of the project. The new portal shall be transported back to Berth 7 along with the temporary float, gangway, and other temporary structures that supported temporary ferry operations during the dredging project.

#### 4. ATTACHMENTS

- 1. Attendee List
- 2. Drawing entitled Adjustable Aprons
- 3. Amended Appendix A Contract Award Schedule of Events
- 4. Report entitled: "Vallejo Ferry: Sediment Characterization Sampling and Analysis Results, dated July 3, 2018".
- 5. Sediment Logs: South San Francisco Ferry Terminal

#### ACKNOWLEDGMENT BY BIDDER

Each bidder is required to acknowledge receipt of all Addenda, including this Addenda No. 1. as specified in the IFB Instructions to Bidders.

#### **ISSUED BY:**

Hahra ent

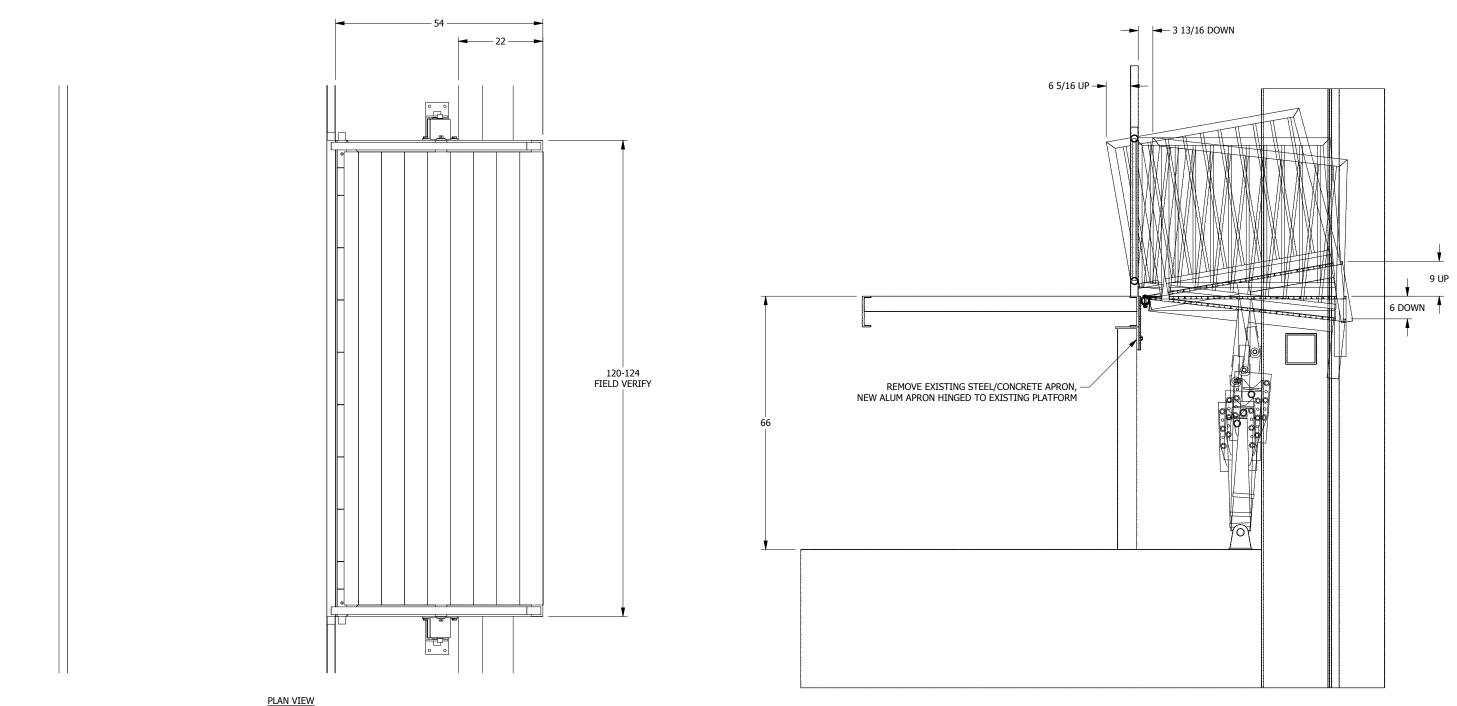
7-17-2018

Date

Keith Stahnke Project Manager



10 Commercial Blvd, Ste 100 | Novato, California 94949 t: 415.884.8011 |


Project: WETA Terminel Dudging

<u>Date:</u> 7/10/18

Pre Bid Meeting

Sign In Sheet

| on          | ESTAMATING @ DUTRAGADUP.C. OV       | DUTRA 1                                     | CHRIS PETERGO  |
|-------------|-------------------------------------|---------------------------------------------|----------------|
| Com         | wdunbare middle                     | Mare Island Ory Deck which are middle . com | William Dunbar |
| 0. (G)      | Kinge wayso was aspection . Con     | Tsi Vo V                                    | RYAN KING      |
| Cert        | ESCHAERER OMANSONCENSTRUCTON CON    | MARSON                                      | CHRUS SUMPRIER |
| rectaite.ne | restateead. I and Jeffce restate.no | RE State Engr                               | Jeff Casey     |
| (0)         | dorren Gewant (26MAIL. (ON)         | PANFIC VILLAGE CO                           | 1)ARGEN GAWANT |
| ferry.com   | robbins@santrancisco bayterry.com   | SF BAY FEPRY                                | MARTY ROBBINS  |
|             | Stalnake Quatertransit, sra         | WETA                                        | Keith Stalnake |
| Sm          | wendy, rocha ofth. com              | Foth - CLE                                  | Wendy Rocha    |
|             | Phone EMail                         | Company                                     | Name           |



GENERAL STRUCTURAL NOTES CONFORMS TO 2015 IBC.

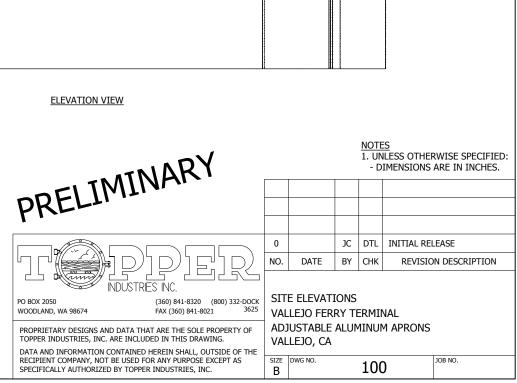
DECK LIVE LOAD: 100 PSF DEFLECTION: L/360

STRUCTURAL MATERIAL: ALUMINUM SHAPES: 6061-T6, MILL FINISH.

STRUCTURAL WELDING FABRICATION SHALL BE IN ACCORDANCE WITH THE AA SPECIFICATIONS FOR ALUMINUM STRUCTURES. WELD USING ALUMINUM FILLER METAL ER5356. FABRICATION, WELDING, WELDING PROCEDURES AND INSPECTION SHALL CONFORM TO AWS D1.2:2014 , AS APPLICABLE.

#### DESIGN NOTES

1. DECKING IS ALUMINUM SLIP RESISTANT. 2. MOTION RANGE IS 9" UP AND 6" DOWN FROM HORIZONTAL.


3. APRON IS ELECTRICALLY ADJUSTABLE WITH BATTERY BACKUP (2 DAYS OF OPERATING LIFE) AS WELL AS MANUAL OPERATION ..

4. LIFTING MECHANISM IS DESIGNED FOR MARINE ENVIRONMENT.

5. WATER TIGHT PUSH BUTTON CONTROL PANEL AT EACH PLATFORM.

6. 48"x24"x10" 316SS CONTROL PANEL ENCLOSURE WITH BREAKER

PANEL, BATTERY CHARGER AND BATTERY.



#### Appendix A (REVISED)

# CONTRACT AWARD SCHEDULE OF EVENTS

| Event                                                      | Estimated Completion |
|------------------------------------------------------------|----------------------|
| WETA Manager, Operations Issues Invitation for Bid ("IFB") | June 21, 2018        |
| Bidders Protest Based on IFB content                       | June 26, 2018        |
| Bidders (Pre Bid) Conference (attendance is mandatory)     | July 10, 2018        |
| Deadline for submissions of questions and clarifications   | July 13, 2018        |
| Final Addendum                                             | July 19, 2018        |
| WETA Operations Manager Receives and opens bids            | July 24, 2018        |
| Submit bid evaluation results to WETA's Executive Director | July 26, 2018        |
| WETA Board Meeting                                         | August 2, 2018       |



July 3, 2018

Ms. Jessica Vargas U.S. Army Corps of Engineers San Francisco District 1455 Market Street San Francisco, CA 94103-1398

Dear Ms. Vargas:

On behalf of the San Francisco Water Emergency Transportation Authority (WETA), please find enclosed three (3) copies of the "Data Report: Characterization of the Sediment from the Vallejo Ferry Dredging Project: Sediment Characterization Sampling and Analysis Results (SAR)", prepared by Foth-CLE Engineering Group. In addition, one copy of this Data Report has been sent to the other DMMO participating agency representatives.

Please place this item on the agenda for review at the July 11, 2018 DMMO meeting. In addition, an electronic copy of this report has been uploaded to the DMMO website for each DMMO participating agency to review.

If you have any questions or need additional information, please feel free to contact me in the office at 508-762-0777.

Sincerely, Foth-CLE Engineering Group Nuenay Richa

Wendy P. Rocha Project Manager

cc (w/enc): Brian Ross, EPA Beth Christian, SFRWQCB Arn Aarreberg, CDFW Craig Weighman, CDFW Gary Stern, NMFS Sara Azat, NOAA Al Franzoia, SLC Ryan Olah, USFWS Marty Robbins, WETA

# WATER EMERGENCY TRANSPORTATION AUTHORITY

DATA REPORT: Characterization of the Sediment from the Vallejo Ferry Terminal Dredging Project: Vallejo, CA

# SEDIMENT CHARACTERIZATION SAMPLING AND ANALYSIS RESULTS (SAR)

# 2018 Vallejo Ferry Terminal Dredging Project (Dredge Episode 8)

July 3, 2018

Prepared for: San Francisco Bay Area Water Emergency Transportation Authority Pier 9, Suite 111 | The Embarcadero | San Francisco, CA 94111 t: 415.291.3377



# DISTRIBUTION LIST

Vargas, Jessica (3 bound copies) U.S. Army Corps of Engineers 1455 Market Street San Francisco, CA 94103-1398 Phone: (415) 503-6807 Email: Jessica.M.Vargas@usace.army.mil

Goeden, Brenda (1 bound copies) San Francisco Bay Conservation and Development Commission 455 Golden Gate Avenue, Suite 10600 San Francisco, CA 94102 Phone: (415) 352-3623 Email: brendag@bcdc.ca.gov

Ross, Brian (electronic copy) U.S. Environmental Protection Agency 75 Hawthorne Street San Francisco, CA 94105-3919 Phone: (415) 972-3475 Email: Ross.Brian@epa.gov

Siu, Jennifer (electronic copy) U.S. Environmental Protection Agency 75 Hawthorne Street San Francisco, CA 94105-3919 Phone: (415) 972-3983 Email: siu.jennifer@epamail.epa.gov

Christian, Elizabeth (1 bound copies) San Francisco Regional Water Quality Control Board 1515 Clay St., Suite 1400 Oakland, CA 94612-1413 Phone: (510) 622-2335 Email: echristian@waterboards.ca.gov

Aarreberg, Arn (electronic copy) California Department of Fish & Wildlife Marin Region 5355 Skylane Blvd. Suite B Santa Rosa, CA 95403 Phone: (707) 576-2889 Email: Arn.Aarreberg@wildlife.ca.gov Weightman, Craig (electronic copy) California Department of Fish & Wildlife 7329 Silverado Trail Napa, CA 94558 Phone: (707) 944-5577 Email: Craig.Weightman@wildlife.ca.gov

Stern, Gary (electronic copy) National Marine Fisheries Service, Southwest Region 777 Sonoma Ave. #325 Santa Rosa, CA 95404 Phone: (707) 575-6060 Email: Gary.Stern@noaa.gov

Azat, Sara (electronic copy) National Marine Fisheries Service 777 Sonoma Avenue, #325 Santa Rosa, CA 05404 Phone: (707) 575-6067 Email: sara.azat@noaa.gov

Franzoia, AI (electronic copy) State Lands Commission 100 Howe Ave, #100 South Sacramento, CA 95825-8202 Phone: (916) 574-0992 Email: al.franzoia@slc.ca.gov

Olah, Ryan (electronic copy) U.S. Fish and Wildlife Service Sacramento Fish and Wildlife Office 2800 Cottage Way Room W-2605 Sacramento, CA 95825-1846 Phone: (916) 414-6623 Email: ryan\_olah@fws.gov

Robbins, Martin J. (electronic copy) San Francisco Bay Area Water Emergency Transportation Authority Pier 9, Suite 111, The Embarcadero San Francisco, CA 94111 Phone: (415) 726-0356 Email: robbins@sanfranciscobayferry.com

#### 10 Commercial Blvd | Ste 100 | Novato, CA 94949 415.884.8011 | 800.668.3220 | f: 415.366.3388

#### LIST OF ACRONYMS

# 10 Commercial Blvd | Ste 100 | Novato, CA 94949

415.884.8011 | 800.668.3220 | f: 415.366.3388

#### **TABLE OF CONTENTS**

| CASE NARRATIVE                                                           |    |
|--------------------------------------------------------------------------|----|
| 1 INTRODUCTION                                                           | 2  |
| 1.1 Objectives of the Sediment Investigation                             | 3  |
| 1.2 Organization                                                         |    |
| 2 SAMPLING PROGRAM: SEDIMENT COLLECTION AND HANDLING                     | 8  |
| 2.1 SAMPLE DESIGNATION                                                   |    |
| 2.2 Overview of Field Activities and Lab Analyses                        | 8  |
| 2.3 TEST SEDIMENT COLLECTION AND HANDLING                                | 8  |
| 2.3.1 Project Site Sample Collection                                     | 8  |
| 2.3.2 Sample Processing and Handling                                     | 8  |
| <u>3</u> <u>RESULTS</u>                                                  | 10 |
| 3.1 PHYSICAL AND CHEMCIAL ANALYSES                                       | 10 |
| 3.1.1 Results of Composite                                               | 10 |
| 3.1.2 Results of Discrete Samples                                        | 11 |
| 3.1.3 Conventional and Chemical Analytical QA/QC Summary                 | 16 |
| 3.2 MODIFIED ELUTRIATE TESTING                                           | 16 |
| 3.2.1 Results of 2018 Composite                                          |    |
| 3.2.2 MET QA/QC Summary                                                  | 16 |
| 3.3 BIOLOGICAL EVALUATION                                                | 17 |
| 3.3.1 Effects of WETA Vallejo Ferry Terminal Sediments on Leptocheirus   |    |
| plumulosus                                                               | 17 |
| 3.3.2 Effects of WETA Vallejo Ferry Terminal Sediments on Neanthes       |    |
| arenaceodentata                                                          |    |
| 3.3.3 Effects of WETA Vallejo Ferry Terminal Sediments on Americamysis b |    |
| 3.3.4 Biological Analytical QA/QC Summary                                |    |
| <u>4</u> <u>DISCUSSION</u>                                               | 20 |
| 4.1 SEDIMENT AND CHEMISTRY EVALUATION                                    |    |
| 4.2 MET EVALUATION                                                       |    |
| 4.3 BIOLOGICAL EVALUATION                                                | -  |
| 4.4 CONCULSIONS                                                          | 20 |
| 5 REFERENCES                                                             | 21 |

# **LIST OF FIGURES**

| Figure 1 - Vicinity Plan                                              | 4 |
|-----------------------------------------------------------------------|---|
| Figure 2 - Regional location map: Cullinan Ranch & Montezuma Wetlands |   |
| Restoration Site                                                      | 5 |
| Figure 3 - Vicinity Map: Vallejo Ferry Terminal                       |   |
| Figure 4 - Proposed Dredge Overview Plan: Sample Locations            |   |

#### 10 Commercial Blvd | Ste 100 | Novato, CA 94949 415.884.8011 | 800.668.3220 | f: 415.366.3388

#### LIST OF TABLES

#### LIST OF APPENDICES

| Appendix A | Sampling Field Logs and Data Sheets                                                |
|------------|------------------------------------------------------------------------------------|
| Appendix B | Analytical Chemistry Laboratory Data Reports Submitted by Eurofins<br>  Calscience |
| Appendix C | Discrete Chemistry Data Report Submitted by Eurofins   Calscience<br>Supplement    |
| Appendix D | MET Laboratory Data Report Submitted by Eurofins   Calscience                      |
| Appendix E | Biological Testing Report Submitted by Pacific EcoRisk                             |
|            |                                                                                    |

#### CASE NARRATIVE

On May 1, 2018 and May 2, 2018, sediment samples were collected from the Vallejo Ferry Terminal located on the eastern shore of Mare Island Strait in Vallejo, CA, and analyzed for physical and chemical constituents in support of the proposed dredge plans of the San Francisco Water Emergency Transit Authority (WETA). After collection, samples were stored in a secured area at 4±2°C. Samples were then processed and shipped to the analytical laboratories in coolers. All chemical analyses were performed within required holding times from sample collection. Table 1 summarizes sample identifications and participating laboratories involved with sample collection and analysis.

#### Table 1 - Sample Collection and Analysis Summary SAMPLE SAMPLING AND ANALYSIS DELEGATION **IDENTIFICATION** Chemical, **Individual Core** Sample Dioxins / TOC, and Selenium Biological Collection Furans I.D.s **Grain Size** ALS Frontier Eurofins Columbia Analytical Pacific Foth-CLE Calscience Analytical Laboratories EcoRisk, Composite Novato, CA Garden El Dorado Fairfield, CA Services, Inc. Grove, CA Kelso, WA Hills, CA

#### San Francisco Bay Area Water Emergency Transportation Authority 2018 Vallejo Ferry Terminal Dredging Project

# **1** INTRODUCTION

The San Francisco Bay Water Emergency Transportation Authority (WETA) is planning and proposing to perform maintenance dredging at the docking area for the Vallejo Ferry Terminal (Ferry) located on the eastern shoreline of Mare Island Strait, approximately 2.5 miles upstream of the Carquinez Strait and 1.5 miles upstream from the mouth of the Napa River (see Figure 1). The proposed dredging is part of normal maintenance of the ferry terminal to remove accumulated sediment that is currently causing the passenger loading float to go aground at low tide and the ferry slips to become inaccessible on extreme low tides. The proposed disposal site for material dredged from the terminal was the Cullinan Ranch Restoration Site, however based on results, we are requesting the material be placed as foundation material at the Montezuma Wetlands Restoration Site. Figures 1 and 2 provides a vicinity map depicting the location of the Ferry and the Montezuma Wetlands Restoration Site. Figures 3 and 4 depicts an overall view of the proposed dredge area within the Ferry Basis.

The proposed dredging depth is 15 feet below Mean Lower Low Water (-15 MLLW) including one-foot over dredge allowance. Approximately 6,270 cubic yards (cy) of material would need to be dredged to reach this depth (this calculation includes a 100% achievement of removing all material including the over dredge tolerance). Dredging will be conducted by clamshell dredge within the footprint illustrated on Figure 4. Dredging will not be conducted on the side-slopes adjacent to the outer limits of the dredging footprint. Instead, dredging will be conducted to the toe of the slope, and material from the side-slopes that slumps down past the toe of the slope will be removed to the project depth. WETA is proposing to place the dredged material as foundation material at the Montezuma Wetlands Restoration Site. The following sections and attached tables and figures provide information in support of that request.

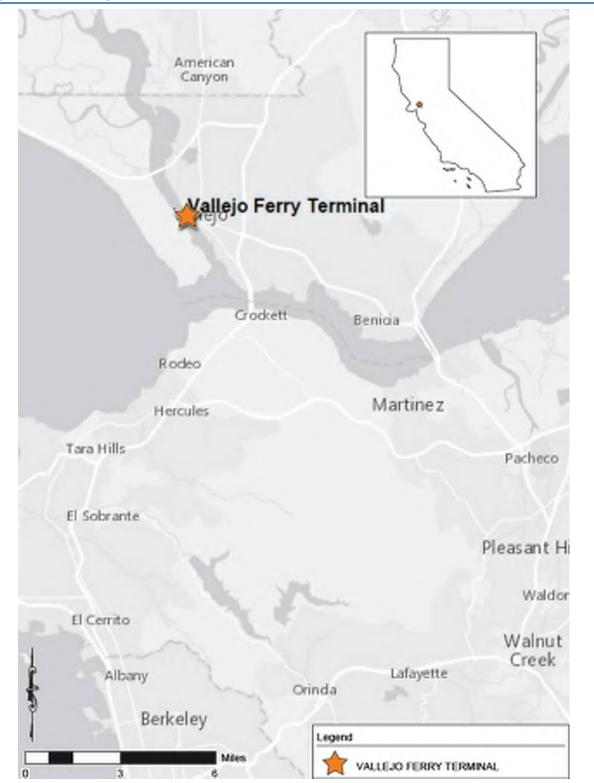
| Dredging<br>Episode | Location                  | Project<br>Depth (ft) | Project Depth<br>Volume<br>(yds <sup>3</sup> ) | Over-<br>depth (ft) | Over-depth<br>Volume<br>(yds <sup>3</sup> ) | Total Volume<br>(yds³) |
|---------------------|---------------------------|-----------------------|------------------------------------------------|---------------------|---------------------------------------------|------------------------|
| Episode 8           | Vallejo Ferry<br>Terminal | -15.0                 | 5,550                                          | 1.0                 | 720                                         | 6,270                  |
| Toto                | al (cy):                  |                       | 5,550                                          |                     | 720                                         | 6,270                  |

Table 2: Proposed maintenance dredging for the Vallejo Ferry Terminal Dredging Project

Foth-CLE Engineering Group (Foth-CLE) collected sediment samples from the Vallejo Ferry located within the in Vallejo, CA for chemical, and physical testing on May 1, 2018 and May 2, 2018. This evaluation was comprised of collecting sediment samples for physical, chemical and biological testing analyses.

# 1.1 Objectives of the Sediment Investigation

The purpose of the sampling and testing proposed will be to evaluate the proposed dredged material to determine whether it will represent an adverse impact during removal operations and placement at the Cullinan Ranch Restoration Site. The procedures for sediment sample collection, sample processing and preparation, physical, chemical analyses are presented in this SAR.


Guidance concerning necessary sampling and analytical protocols, quality assurance/quality control (QA/QC) procedures, and data interpretation used in preparation of this SAP is found in:

- Beneficial Reuse of Dredged Materials: Sediment Screening and Testing Guidelines (SF RWQCB 2000);
- Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. Testing Manual (ITM; USEPA/USACE 1998);
- Public Notice 01-1: Guidelines for Implementing the Inland Testing Manual in the San Francisco Bay Region;
- Public Notice 99-4: Proposed Guidance for Sampling and Analysis Plans (Quality Assurance Project Plans) for Dredging Projects within the USACE San Francisco District;
- San Francisco Bay Regional Water Quality Control Board Order No R2-2010-0108 Waste Discharge Requirements for: U.S. Fish and Wildlife Service Cullinan Ranch Restoration Project;
- The Dredged Material Management Office (DMMO) review process.

#### 1.2 Organization

This report follows guidelines as set forth in PN 99-4: Proposed Guidance for Sampling and Analysis Plans for Dredging Projects within the USACE San Francisco District (USEPA/USACE 1999). It includes methods described in the PN 01-01: Guidelines for Implementing the Inland Testing Manual in the San Francisco Bay Region (USEPA/USACE 2001). It is organized as follows:

- ✓ Introduction Section 1.0
- ✓ Sampling Program Section 2.0
- ✓ Results Section 3.0
- ✓ Discussion Section 4.0
- ✓ References Section 5.0



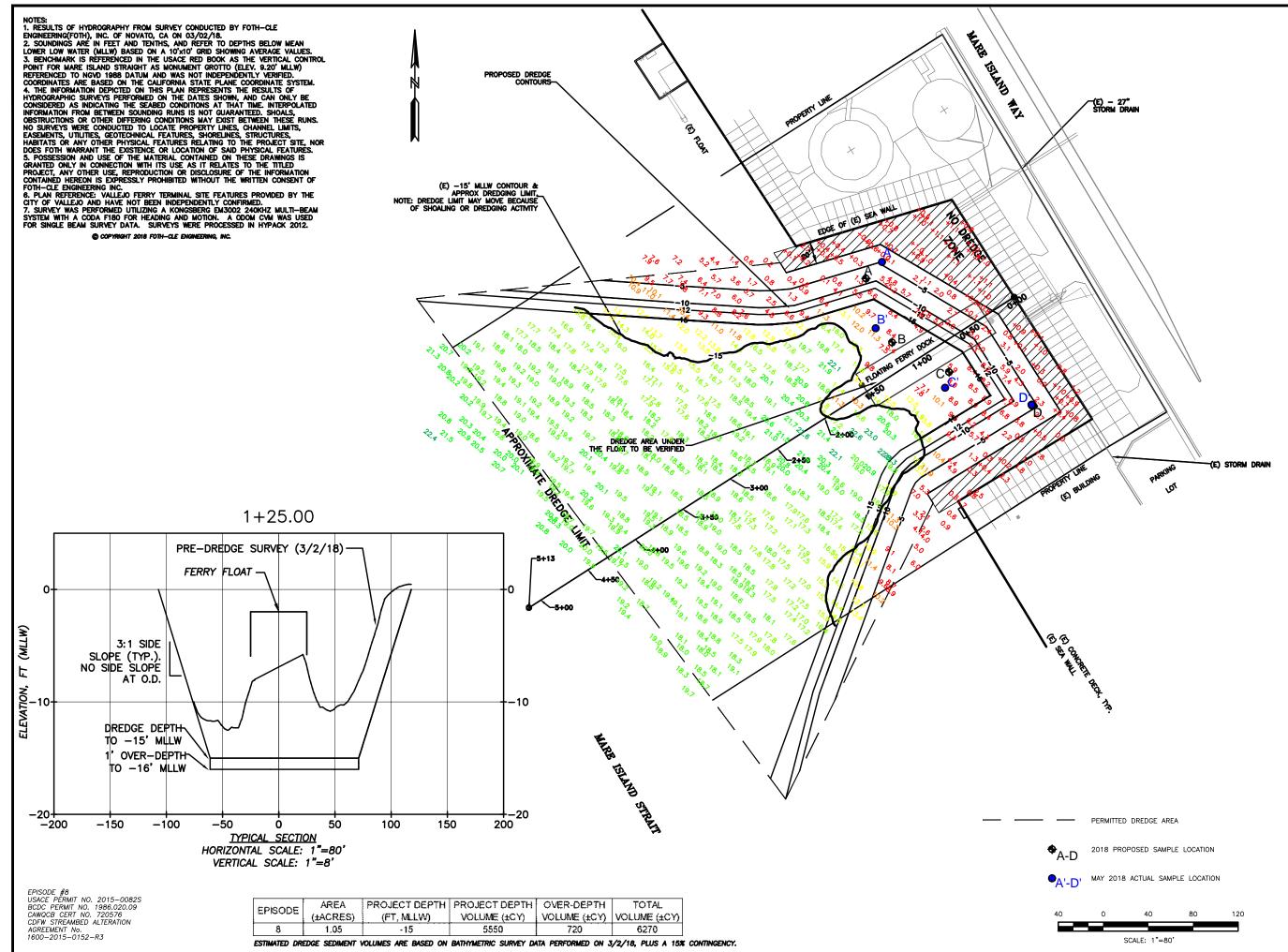

# Figure 1 - Vicinity Plan



Figure 2 - Regional location map: Cullinan Ranch & Montezuma Wetlands Restoration Site



# Figure 3 - Vicinity Map: Vallejo Ferry Terminal



| It is a violation of law for any person unless he is<br>octing under the direction of a likensed professional<br>engineer to alter this document<br>This drawing was prepared at the scale indicated in<br>the title block. Inscarcings in the stated scale may<br>be introduced when drawings are reproduced by any<br>means. (Use the graphic scale bar to determine the<br>actual scale of this drawing) |           |                   |          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|----------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |          |  |  |
| San Fran                                                                                                                                                                                                                                                                                                                                                                                                    | cisco B   | lay Fer           | ry       |  |  |
| WETA<br>WATER EMERGENCY<br>TRANSPORTATION AUTHORITY                                                                                                                                                                                                                                                                                                                                                         |           |                   |          |  |  |
| CONSULTANT                                                                                                                                                                                                                                                                                                                                                                                                  | FO        | th                |          |  |  |
| WETA<br>WETA<br>VALLEJO FERRY SYSTEM<br>VALLEJO FERRY TERMINAL FACILITY                                                                                                                                                                                                                                                                                                                                     | ERMINAL   | 2018<br>EICTIDE A | LIGUNE 4 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |          |  |  |
| REVISIONS                                                                                                                                                                                                                                                                                                                                                                                                   |           |                   |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |          |  |  |
| SHEET TITLE<br>PRE-DREDGE                                                                                                                                                                                                                                                                                                                                                                                   |           |                   |          |  |  |
| ISSUANCE                                                                                                                                                                                                                                                                                                                                                                                                    |           |                   |          |  |  |
| SCALE<br>NOTED                                                                                                                                                                                                                                                                                                                                                                                              |           |                   |          |  |  |
| DRAWN BY                                                                                                                                                                                                                                                                                                                                                                                                    | SHEET NU! | MBER              |          |  |  |
| CHECKED BY<br>WR                                                                                                                                                                                                                                                                                                                                                                                            |           | 1                 |          |  |  |
| PROJECT NO<br>17414.100                                                                                                                                                                                                                                                                                                                                                                                     |           | T                 |          |  |  |
| DATE<br>05/30/2018                                                                                                                                                                                                                                                                                                                                                                                          | F         | IGURE 4           |          |  |  |

# 2 SAMPLING PROGRAM: SEDIMENT COLLECTION AND HANDLING

# 2.1 SAMPLE DESIGNATION

In accordance with the SAP (CLE 2018), four (4) sediment core samples were collected from the Vallejo Ferry in 2018 DU-1 Composite as depicted in Figure 4.

#### 2.2 Overview of Field Activities and Lab Analyses

All sediments were collected in accordance with guidelines and procedures. A total of four (4) sample locations composited into one (1) analytical sample were evaluated within the proposed dredge areas. The subsamples were archived for possible discrete analysis, should elevated concentrations be detected in the composite sample. A six-inch "Z" sample was also collected and archived at the laboratory in case additional testing is required. The actual composite samples being analyzed are described below.

#### 2.3 TEST SEDIMENT COLLECTION AND HANDLING

#### 2.3.1 Project Site Sample Collection

On May 1, 2018 and May 2, 2018, Foth-CLE and Bay Marine Services (BMS) personnel collected four (4) sediment core samples at the locations shown on Figure 4. BMS personnel pre-plotted sample locations and their corresponding geographic coordinates on a field map prior to field activities. The vessel was maneuvered into position over each sample location using a differential Global Positioning System (dGPS) and visual verification where possible. The dGPS system uses U.S. Coast Guard differential correction data, and is accurate to ± 2 meters.

Continuous sediment cores were collected to the proposed dredge depth plus a one-foot overdredge allowance and a six-inch 'Z-layer'. Sampling depths and core lengths for each sample station are provided in Table 3. Upon deployment of the core, geographic coordinates were recorded in log sheets. Upon collection of each sample core, penetration depth and sediment retrieval length were measured and recorded. Final sample location coordinates, sampling depths, and core lengths, are provided in Table 3. Core Logs are presented in Appendix A.

| DREDGE<br>UNIT | SAMPLE<br>ID | Northing*   | Easting*    | Mudline<br>Elevation<br>(-ft MLLW) | Target<br>Core<br>Length<br>(ft)** | Retrieved<br>Core<br>Depth<br>(ft) | Core<br>Length<br>Sampled<br>(ft) |
|----------------|--------------|-------------|-------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|
|                | А            | 2227854.811 | 6054372.392 | 1.1                                | 9.2                                | 10.3***                            | 9.2                               |
| Composito      | В            | 2227795.975 | 6054366.774 | 8.5                                | 8.0                                | 16.5                               | 8.0                               |
| Composite      | С            | 2227743.032 | 6054428.519 | 7.8                                | 8.7                                | 16.5                               | 8.7                               |
|                | D            | 2227727.875 | 6054505.446 | 2.6                                | 5.1                                | 7.7***                             | 5.1                               |

#### Table 3: Dredge Episode 8: Locations of sampling stations and core depths

\*State Plane Coordinate System, California Zone 3, NAD 83

\*\*Target Core includes the dredge allowance and a six-inch 'Z-layer' which was archived for additional analyses if needed. \*\*\*Sample located on the side-slope.

# 2.3.2 Sample Processing and Handling

Upon collection of each sample core, penetration depth and sedimentation retrieval length data were measured and recorded. After each sample was retrieved, the sediment core was extruded onto a non-contaminating polyethylene sheets and then characterized for texture,

color, and odor. Prior to the homogenization of each sediment core for evaluation as per the ITM, the "Z" layer (the 0.5 feet of sediment below the proposed permitted depth plus overdepth for each sample) for each core were collected and homogenized. A sub-sample of each "Z" layer sediment for each individual core was archived to allow for additional chemical analyses if necessary.

| SAMPLE ID | PENETRATION DEPTH<br>(FT) | COLOR                 | ODOR    | SEDIMENT TYPE                                                                                                                                                                                                         |
|-----------|---------------------------|-----------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A         | 0-10.3                    | Dark Gray             | No Odor | Dark Gray to Black Fine Grained<br>Bay Mud. Minor Bioclastic and<br>Organic Material Present. No<br>Smell/No Sheen. Dense throughout<br>Core with lamination of Coarse Silt<br>Topping Core.                          |
| В         | 0-16.5                    | Dark Gray             | No Odor | Dark Gray to Black Fine Grained<br>Bay Mud. Minor Bioclastic and<br>Organic Material Present. No<br>Smell/No Sheen. Dense throughout<br>Core with lamination of Coarse Silt<br>Topping Core.                          |
| С         | 0-16.5                    | Dark Gray             | No Odor | Dark Gray to Black Fine Grained<br>Bay Mud. Minor Bioclastic and<br>Organic Material Present. No<br>Smell/No Sheen. Dense throughout<br>Core with lamination of Coarse Silt<br>Topping Core.                          |
| D         | 0-7.7                     | Light Gray to<br>Gray | No Odor | Light Gray to Gray Fine Grained<br>Bay Mud. Little to No Bioclastic and<br>Organic Material Present. No<br>Smell/No Sheen. Firm at Base to<br>Loose at Top of Core with<br>Lamination of Coarse Silt Topping<br>Core. |

#### Table 4: Physical Characterization of Sediment Cores

#### Table 5: Compositing Scheme

| SAMPLE ID | Analysis                                 |
|-----------|------------------------------------------|
| Composite | Physical, Chemical , Benthic<br>Toxicity |

Sediment from each sediment core was thoroughly homogenized in the field to a uniform color and texture. Subsamples of the homogenates of each the four (4) cores were mixed to create composite samples for the physical and chemical tests. The remainder of each individual core homogenate was archived at 4°C. Upon completion of the sampling event, all samples were transported to the Foth-CLE's office where they were stored in darkened conditions at 4°C until released under chain of custody to the laboratory.

# 3 **RESULTS**

Results of the chemical, physical, and biological analyses of the sediments collected from the Vallejo Ferry Terminal were evaluated to determine the material's suitability for placement at the Cullinan Ranch Restoration Site. The specific analyses employed for this evaluation are discussed below.

# 3.1 PHYSICAL AND CHEMCIAL ANALYSES

Subsamples from the composite sample were taken and shipped on ice to Eurofins | Calscience for grain-size, TOC and chemistry testing and ALS Environmental for Selenium testing and Frontier Analytical Laboratories for Dioxins and Furans. The State of California has certified Eurofins | Calscience, ALS Environmental and Frontier Analytical Laboratories for the analyses performed. Sediment samples were analyzed for the chemical and conventional parameters specified in the SAP (Foth-CLE 2018). Conventional parameters included total organic carbon (TOC), total solids, and grain size. Chemical analyses of trace metals, polycyclic aromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs), butyltins and dioxins were performed. The results of these analyses are summarized in Tables 6 through 14. Complete laboratory reports that were submitted are included in Appendix B.

# 3.1.1 Results of Composite

Total solids for 2018 composite was 45.0% and TOC levels were moderate (2.5%). Grain size analyses indicated that the sediment consisted primarily of fines (silts and clay) with 91.25% fines.

Metals concentrations were below limits for Beneficial Reuse with the exception of Cadmium at a slightly elevated level of 0.875 mg/kg (Cullinan acceptance level of 0.7 mg/kg). Total PAHs were detected in the sample at a concentration of 812  $\mu$ g/kg, below the Beneficial Reuse Limit level (3,390  $\mu$ g/kg). All pesticides, butyltins, and PCBs were below the method detection limits or below the acceptability criteria for Beneficial Reuse.

| SAMPLE ID | Analytes Exceeding Beneficial Reuse<br>Levels  |
|-----------|------------------------------------------------|
| Composite | Cadmium, 2,6-Dimethylnaphthalene,<br>Perylene* |
|           |                                                |

\*Total PAHs were below the Beneficial Reuse Limit Level of (3,390 µg/kg)

# Table 7: Analytical Results for Vallejo Ferry Terminal: Grain Size, Total Solids (%), and Total OrganicCarbon (%)

| Analyte            | Method<br>Reference | Reporting Limit | Beneficial<br>Reuse Limit | 2018<br>Composite |  |  |
|--------------------|---------------------|-----------------|---------------------------|-------------------|--|--|
|                    | Conventionals       |                 |                           |                   |  |  |
|                    |                     | Grain Size      |                           |                   |  |  |
| Gravel             | ASTMD4464           |                 |                           | ND                |  |  |
| Sand               | ASTMD4464           |                 |                           | 8.75              |  |  |
| Silt               | ASTMD4464           |                 |                           | 62.43             |  |  |
| Clay               | ASTMD4464           |                 | N/A                       | 28.82             |  |  |
| TOC (%)            | EPA9060A            | 0.11            |                           | 2.5               |  |  |
| Percent Solids (%) | SM2540B             | 0.1             |                           | 45.0              |  |  |

| Analyte | Method<br>Reference | Reporting Limit | Cullinan<br>Ranch<br>Beneficial<br>Reuse Limit | 2018<br>Composite | Duplicate<br>Sample |
|---------|---------------------|-----------------|------------------------------------------------|-------------------|---------------------|
|         |                     | Metals (mg      | ı/kg)                                          |                   |                     |
| As      | EPA 6020            | 0.222           | 15.3                                           | 13.5              | 13.6                |
| Cd      | EPA 6020            | 0.222           | 0.7                                            | 0.875             | 0.885               |
| Cr      | EPA 6020            | 0.222           | 112                                            | 98.8              | 100                 |
| Cu      | EPA 6020            | 0.222           | 68.1                                           | 66.5              | 67.3                |
| Pb      | EPA 6020            | 0.222           | 43.2                                           | 26.6              | 26.9                |
| Hg      | EPA 7471A           | 0.0444          | 0.33                                           | .286              | Not Sampled         |
| Ni      | EPA 6020            | 0.222           | 112                                            | 104.0             | 105                 |
| Se      | EPA 7742            | 0.1             | 0.64                                           | 0.31              | Not Sampled         |
| Ag      | EPA 6020            | 0.222           | 0.58                                           | 0.350             | 0.354               |
| Zn      | EPA 6020            | 2.22            | 158                                            | 141               | 143                 |

# Table 8: Analytical Results for Vallejo Ferry Terminal: Metals Concentrations (mg/kg, dry wt.)

# 3.1.2 Results of Discrete Samples

Analysis for Cadmium were performed on the discrete sample sites and composite duplicate due to the slightly elevated levels above the Cullinan Ranch Restoration Site. All results were above the acceptance levels for both Cadmium.

# Table 9: Analytical Results for Vallejo Ferry Terminal: Metals Concentrations- Discrete Samples (mg/kg, dry wt.)

| Analyte | Method<br>Reference | Reporting<br>Limit | Cullinan<br>Ranch<br>Beneficial<br>Reuse Limit | 2018<br>Composite<br>Duplicate | Sample A | Sample B | Sample C | Sample D |
|---------|---------------------|--------------------|------------------------------------------------|--------------------------------|----------|----------|----------|----------|
|         | Metals (mg/kg)      |                    |                                                |                                |          |          |          |          |
| Cd      | EPA 6020            | 0.225              | 0.7                                            | 1.4                            | 1.07     | 1.35     | 0.975    | 1.180    |

| Analyte                    | Method<br>Reference | Reporting<br>Limit | Beneficial<br>Reuse Limit | 2018<br>Composite |  |  |  |  |
|----------------------------|---------------------|--------------------|---------------------------|-------------------|--|--|--|--|
|                            | PAHs (ug/kg)        |                    |                           |                   |  |  |  |  |
| 1-Methylnaphthalene        | EPA 8270C           | 22 µg/kg           | 12.1                      | ND                |  |  |  |  |
| 1-Methylphenanthrene       | EPA 8270C           | 22 µg/kg           | 31.7                      | ND                |  |  |  |  |
| 1,6,7-Trimethylnaphthalene | EPA 8270C           | 22 µg/kg           | 9.8                       | ND                |  |  |  |  |
| 2,6-Dimethylnaphthalene    | EPA 8270C           | 22 µg/kg           | 12.1                      | 35                |  |  |  |  |
| 2-Methylnaphthalene        | EPA 8270C           | 22 µg/kg           | 19.4                      | ND                |  |  |  |  |
| Acenaphthene               | EPA 8270C           | 22 µg/kg           | 26                        | ND                |  |  |  |  |
| Acenaphthylene             | EPA 8270C           | 22 µg/kg           | 88                        | ND                |  |  |  |  |
| Anthracene                 | EPA 8270C           | 22 µg/kg           | 88                        | ND                |  |  |  |  |
| Benzo(a)anthracene         | EPA 8270C           | 22 µg/kg           | 412                       | 53                |  |  |  |  |
| Benzo(a)pyrene             | EPA 8270C           | 22 µg/kg           | 371                       | 98                |  |  |  |  |
| Benzo(b)fluoranthene       | EPA 8270C           | 22 µg/kg           | 371                       | 87                |  |  |  |  |
| Benzo(e)pyrene             | EPA 8270C           | 22 µg/kg           | 294                       | 62                |  |  |  |  |
| Benzo(g,h,i)perylene       | EPA 8270C           | 22 µg/kg           | 310                       | 82                |  |  |  |  |
| Benzo(k)fluoranthene       | EPA 8270C           | 22 µg/kg           | 258                       | 60                |  |  |  |  |
| Biphenyl                   | EPA 8270C           | 22 µg/kg           | 12.9                      | ND                |  |  |  |  |
| Chrysene                   | EPA 8270C           | 22 µg/kg           | 289                       | 59                |  |  |  |  |
| Dibenz(a,h)anthracene      | EPA 8270C           | 22 µg/kg           | 32.7                      | ND                |  |  |  |  |
| Dibenzothiophene           | EPA 8270C           | 22 µg/kg           |                           | ND                |  |  |  |  |
| Fluoranthene               | EPA 8270C           | 22 µg/kg           | 514                       | 110               |  |  |  |  |
| Fluorene                   | EPA 8270C           | 22 µg/kg           | 25.3                      | ND                |  |  |  |  |
| Indeno(1,2,3-cd)pyrene     | EPA 8270C           | 22 µg/kg           | 382                       | 57                |  |  |  |  |
| Naphthalene                | EPA 8270C           | 22 µg/kg           | 55.8                      | ND                |  |  |  |  |
| Perylene                   | EPA 8270C           | 22 µg/kg           | 145                       | 220               |  |  |  |  |
| Phenanthrene               | EPA 8270C           | 22 µg/kg           | 237                       | 32                |  |  |  |  |
| Pyrene                     | EPA 8270C           | 22 µg/kg           | 665                       | 120               |  |  |  |  |
| Total PAHs                 |                     |                    | 3,390                     | 1,075             |  |  |  |  |

# Table 10: Analytical Results for Valleo Ferry Terminal: PAHs Concentrations (ug/kg, dry wt.)

| Analyte     | Method<br>Reference | Reporting<br>Limit | Beneficial<br>Reuse<br>Limit | 2018<br>Composite |  |  |
|-------------|---------------------|--------------------|------------------------------|-------------------|--|--|
| PCB-005/008 | EPA 8270C           | 0.89 µg/kg         |                              | ND                |  |  |
| PCB-18      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-28      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-31      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-33      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-44      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-49      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-52      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-56      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-60      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-66      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-70      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-74      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-87      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-95      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-97      | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-99      | EPA 8270C           | 0.44 µg/kg         |                              | 0.68              |  |  |
| PCB-101     | EPA 8270C           | 0.44 µg/kg         | 22.7                         | 0.96              |  |  |
| PCB-105     | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-110     | EPA 8270C           | 0.44 µg/kg         |                              | 0.75              |  |  |
| PCB-118     | EPA 8270C           | 0.44 µg/kg         |                              | 0.94              |  |  |
| PCB-128     | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-132     | EPA 8270C           | 0.89 µg/kg         |                              | 1.4               |  |  |
| PCB-138     | EPA 8270C           | 0.89 µg/kg         |                              | ND                |  |  |
| PCB-141     | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-149     | EPA 8270C           | 0.44 µg/kg         |                              | 0.96              |  |  |
| PCB-151     | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-153     | EPA 8270C           | 0.89 µg/kg         |                              | 1.4               |  |  |
| PCB-156     | EPA 8270C           | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-158     | EPA 8270C           | 0.84 µg/kg         |                              | 0.86              |  |  |
| PCB-170     | EPA 8270C           | 0.44 µg/kg         |                              | 0.51              |  |  |
| PCB-174     | EPA 8082 ECD        | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-177     | EPA 8082 ECD        | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-180     | EPA 8082 ECD        | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-183     | EPA 8082 ECD        | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-187     | EPA 8082 ECD        | 0.44 µg/kg         |                              | 0.67              |  |  |
| PCB-194     | EPA 8082 ECD        | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-195     | EPA 8082 ECD        | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-201     | EPA 8082 ECD        | 0.44 µg/kg         |                              | ND                |  |  |
| PCB-203     | EPA 8082 ECD        | 0.44 µg/kg         |                              | ND                |  |  |
| Total PCBs  |                     |                    | 22.7                         | 9.13              |  |  |

# Table 11: Analytical Results for Vallejo Ferry Terminal: PCB Congener Concentrations (ug/kg, dry wt.)

San Francisco Bay Area Water Emergency Transportation Authority 2018 Vallejo Ferry Terminal Dredging Project

| Analyte            | Method<br>Reference | Reporting<br>Limit | Beneficial<br>Reuse Limit | 2018 Composite |
|--------------------|---------------------|--------------------|---------------------------|----------------|
| Aldrin             | EPA 8081B           | 2.1 µg/kg          | 2.2                       | ND             |
| a-BHC              | EPA 8081B           | 4.4 µg/kg          |                           | ND             |
| b-BHC              | EPA 8081B           | 2.2 µg/kg          | 0.99                      | ND             |
| g-BHC (Lindane)    | EPA 8081B           | 2.2 µg/kg          | 0.99                      | ND             |
| d-BHC              | EPA 8081B           | 4.4 µg/kg          |                           | ND             |
| Chlordane, total   | EPA 8081B           | 2.2 µg/kg          | 1.1                       | ND             |
| 2,4'-DDD           | EPA 8081B           | 2.1 µg/kg          |                           | ND             |
| 2,4'-DDE           | EPA 8081B           | 4.4 µg/kg          |                           | ND             |
| 2,4'-DDT           | EPA 8081B           | 2.2 µg/kg          |                           | ND             |
| 4,4'-DDD           | EPA 8081B           | 2.2 µg/kg          | 7                         | 2.3            |
| 4,4'-DDE           | EPA 8081B           | 2.2 µg/kg          |                           | 3.3            |
| 4,4'-DDT           | EPA 8081B           | 2.2 µg/kg          |                           | ND             |
| Total DDT          | EPA 8081B           | 2 µg/kg            |                           | 5.6            |
| Dieldrin           | EPA 8081B           | 2.2 µg/kg          | 0.72                      | ND             |
| Endosulfan I       | EPA 8081B           | 2.2 µg/kg          |                           | 2.5            |
| Endosulfan II      | EPA 8081B           | 2.2 µg/kg          |                           | ND             |
| Endosulfan sulfate | EPA 8081B           | 2.2 µg/kg          |                           | ND             |
| Endrin             | EPA 8081B           | 2.2 µg/kg          | 0.78                      | ND             |
| Endrin aldehyde    | EPA 8081B           | 2.2 µg/kg          | 6.4                       | ND             |
| Heptachlor         | EPA 8270C           | 0.44 µg/kg         | 0.3                       | ND             |
| Heptachlor epoxide | EPA 8270C           | 0.44 µg/kg         | 0.3                       | ND             |
| Toxaphene          | EPA 8081B           | 44 µg/kg           |                           | ND             |

#### Table 12: Analytical Results for Vallejo Ferry Terminal: Pesticides Concentrations (ug/kg, dry wt.)

# Table 13: Analytical Results for Vallejo Ferry Terminal: Ogranochlorine Pesticide Concentrations (ug/kg, dry wt.)

| Analyte       | Method<br>Reference | Reporting<br>Limit | Beneficial<br>Reuse Limit | 2018<br>Composite |
|---------------|---------------------|--------------------|---------------------------|-------------------|
| TetrabutyItin | EPA 3550 B          | 6.7                |                           | ND                |
| TributyItin   | EPA 3550 B          | 6.7                |                           | ND                |
| DibutyItin    | EPA 3550 B          | 6.7                | N/A                       | ND                |
| Monobutyltin  | EPA 3550 B          | 6.7                |                           | ND                |

| Analyte             | Method<br>Reference | Reporting<br>Limit | 2018<br>Composite |
|---------------------|---------------------|--------------------|-------------------|
| D                   | ioxins & Furans (j  | µg/kg)             |                   |
| 2,3,7,8-TCDD        | EPA 1613            | 0.0000273          | ND                |
| 1,2,3,7,8-PeCDD     | EPA 1613            | 0.0000570          | 0.000694          |
| 1,2,3,4,7,8-HxCDD   | EPA 1613            | 0.0000793          | 0.000824          |
| 1,2,3,6,7,8-HxCDD   | EPA 1613            | 0.000094           | 0.00255           |
| 1,2,3,7,8,9-HxCDD   | EPA 1613            | 0.0000823          | 0.00164           |
| 1,2,3,4,6,7,8-HpCDD | EPA 1613            | 0.0000842          | 0.0267            |
| OCDD                | EPA 1613            | 0.0000172          | 0.155             |
| 2,3,7,8-TCDF        | EPA 1613            | 0.0000269          | 0.00203           |
| 1,2,3,7,8-PeCDF     | EPA 1613            | 0.0000449          | 0.000652          |
| 2,3,4,7,8-PeCDF     | EPA 1613            | 0.0000468          | 0.000127          |
| 1,2,3,4,7,8-HxCDF   | EPA 1613            | 0.0000437          | 0.00104           |
| 1,2,3,6,7,8-HxCDF   | EPA 1613            | 0.0000417          | 0.000877          |
| 1,2,3,7,8,9-HxCDF   | EPA 1613            | 0.0000657          | 0.00042           |
| 2,3,4,6,7,8-HxCDF   | EPA 1613            | 0.0000574          | 0.00104           |
| 1,2,3,4,6,7,8-HpCDF | EPA 1613            | 0.0000747          | 0.00652           |
| 1,2,3,4,7,8,9-HpCDF | EPA 1613            | 0.0000883          | 0.00064           |
| OCDF                | EPA 1613            | 0.00017            | 0.013             |
| Total Tetra-Dioxins | EPA 1613            |                    | 0.00541           |
| Total Penta-Dioxins | EPA 1613            |                    | 0.00709           |
| Total Hexa-Dioxins  | EPA 1613            |                    | 0.0266            |
| Total Hepta-Dioxins | EPA 1613            |                    | 0.0686            |
| Total Tetra-Furans  | EPA 1613            |                    | 0.0208            |
| Total Penta-Furans  | EPA 1613            |                    | 0.0133            |
| Total Hexa-Furans   | EPA 1613            |                    | 0.013             |
| Total Hepta-Furans  | EPA 1613            |                    | 0.018             |

#### Table 14: Analytical Results for Vallejo Ferry Terminal: Dioxins & Furans (µg/kg)

| Analyte        | Method    | Beneficial  | 2018 Composite |
|----------------|-----------|-------------|----------------|
|                | Reference | Reuse Limit | (TEQ)          |
| Total TCDD TEQ | EPA 1613  | 0.02 ug/kg  | 0.00253 ug/kg  |

# 3.1.3 Conventional and Chemical Analytical QA/QC Summary

The QA/QC review entailed reviewing the contract lab Data Reports for sample integrity, correct methodology, and compliance with all appropriate quality Lab Control requirements. The overall data quality assessment found that all data were usable. Appendix B and C contains the conventional and chemical analysis report. There were no significant issues with the analytical chemistry QA/QC limits that would affect the overall quality or interpretation of the data.

#### 3.2 MODIFIED ELUTRIATE TESTING

Modified Elutriate Testing (MET) was performed to address the potential impacts from the decant water resulting from the placement of dredged material. The sediment elutriates were analyzed for the suite of heavy metals in accordance with MET methods described in Appendix B of the ITM. Eurofins | Calscience performed the MET analysis as specified in the SAP (CLE 2018). The results of these analyses are summarized in Table 15. Complete laboratory reports that were submitted are included in Appendix C.

| Analyte            | Method<br>Reference | Reporting<br>Limit | SFRWQCB Basin<br>Water Quality<br>Objectives<br>Cont. Conc. (4-<br>day avg.)<br>(µg/L) | 2018<br>Composite |
|--------------------|---------------------|--------------------|----------------------------------------------------------------------------------------|-------------------|
| Dissolved Arsenic  | EPA 1640            | 0.0300             | 36                                                                                     | 4.70              |
| Dissolved Cadmium  | EPA 1640            | 0.0300             | 9.3                                                                                    | 0.0275            |
| Dissolved Chromium | EPA 1640            | 0.500              | 50                                                                                     | 0.299             |
| Dissolved Copper   | EPA 1640            | 0.0300             | 6.0                                                                                    | 1.21              |
| Dissolved Lead     | EPA 1640            | 0.0300             | 8.1                                                                                    | 0.0455            |
| Dissolved Mercury  | EPA 1631E           | 0.000500           | 2.0                                                                                    | 0.00436           |
| Dissolved Nickel   | EPA 1640            | 0.0500             | 8.2                                                                                    | 2.24              |
| Total Selenium     | EPA 1640            | 0.0500             | 5.0                                                                                    | 0.0844            |
| Dissolved Silver   | EPA 1640            | 0.0500             | -                                                                                      | ND                |
| Dissolved Zinc     | EPA 1640            | 0.500              | 81                                                                                     | 0.636             |
| TSS                | SM 2540D            | 1.0                | _                                                                                      | 17 mg/L           |

#### Table 15: Analytical Results for Vallejo: MET Metals analytes

# 3.2.1 Results of 2018 Composite

MET analysis for metals concentrations were below limits for SFRWQCB Basin Water Quality Objectives Concentrations.

#### 3.2.2 MET QA/QC Summary

The QA/QC review entailed reviewing the contract lab Data Reports for sample integrity, correct methodology, and compliance with all appropriate quality Lab Control requirements. The overall data quality assessment found that all data were usable. Appendix D contains the conventional and chemical analysis report. There were no significant issues with the MET QA/QC limits that would affect the overall quality or interpretation of the data.

# 3.3 **BIOLOGICAL EVALUATION**

To assess the potential biological impacts associated with placement of sediments from the Vallejo Ferry Terminal, Pacific EcoRisk performed biological tests on the composite sample:

- 1. 10-day amphipod survival test with Leptocheirus plumulosus,
- 2. 10-day juvenile polychaete survival test with Neanthes arenaceodentata,
- 3. 96-hr modified elutriate acute test with Americamysis bahia.

The results of these analyses are summarized in Table 16-18. Complete laboratory reports that were submitted by Pacific EcoRisk are included in Appendix D.

#### 3.3.1 Effects of WETA Vallejo Ferry Terminal Sediments on Leptocheirus plumulosus

There was 100% survival in the Control sediment, indicating an acceptable survival response by the test organisms. There was no significant reduction in survival in the 2018 DU-1 composite sediment (99%). The difference in survival in the site sediment relative to the Control response was <20% indicated that these sediments are not toxic to amphipods. The reference toxicant testing effects of KCI on *Leptocheirus plumulosus* indicated that the LC<sub>50</sub> (1.19 g/L KCI for 2018 DU-1 Composite) for these tests are consisted with the typical response range established by the reference test data base for *Leptocheirus plumulosus*.

#### Table 16: Effects of Vallejo Ferry Terminal on Leptocheirus plumulosus

| Elutriate Treatment | Mean % Survival: |
|---------------------|------------------|
| Lab Control         | 100%             |
| 2018 DU-1 Composite | 99%              |

#### Table 16a: Effects of Vallejo Ferry Terminal on Leptocheirus plumulosus

| Sediment Site          | % Survival in Test Replicates |       |       |       | Mean %<br>Survival |          |
|------------------------|-------------------------------|-------|-------|-------|--------------------|----------|
| sediment sile          | Rep A                         | Rep B | Rep C | Rep D | Rep E              | 30171701 |
| Lab Control            | 100%                          | 100%  | 100%  | 100%  | 100%               | 100%     |
| 2018 DU-1<br>Composite | 95%                           | 95%   | 100%  | 100%  | 100%               | 99%      |

#### Table 16b: Effects of KCI on Leptocheirus plumulosus

| KCI Treatment (g/L                         | 2018 Comp<br>Mean %<br>Survival |
|--------------------------------------------|---------------------------------|
| Lab Control                                | 100                             |
| 0.25                                       | 95                              |
| 0.50                                       | 100                             |
| 1                                          | 75*                             |
| 2                                          | 0*                              |
| 4                                          | 0*                              |
| LC 50                                      | 1.19 g/L KCl                    |
| Typical Response<br>Range (mean +/- 2SD) = | 0.308-1.63 g/L<br>KCl           |

\*The survival response at this treatment was significantly less than the Lab Control response at p<0.05.

# 3.3.2 Effects of WETA Vallejo Ferry Terminal Sediments on Neanthes arenaceodentata

There was 100% survival in the Control sediment, indicating an acceptable survival response by the test organisms. There was no reduction in survival in the 2018 DU-1 Composite sediment (100%). The difference in survival in the site sediment relative to the Control response was <10% indicated that these sediments are not toxic to polychaetes. The reference toxicant testing effects of KCI on Neanthes arenaceodentata indicated that the LC<sub>50</sub> (1.86 g/L KCI for 2018 DU-1 Composite) for these tests are consisted with the typical response range established by the reference test data base for Neanthes arenaceodentata.

#### Table 17: Effects of Vallejo Ferry Terminal on Neanthes arenaceodentata

| Elutriate Treatment | Mean % Survival |
|---------------------|-----------------|
| Lab Control         | 100%            |
| 2018 DU-1 Composite | 100%            |

#### Table 17a: Effects of Vallejo Ferry Terminal on Neanthes arenaceodentata

| Sediment Site           | % Survival in Test Replicates |       |       |       | Mean %<br>Survival |          |
|-------------------------|-------------------------------|-------|-------|-------|--------------------|----------|
| Securierii Sile         | Rep A                         | Rep B | Rep C | Rep D | Rep E              | 30171701 |
| Lab Control             | 100%                          | 100%  | 100%  | 100%  | 100%               | 100%     |
| 2018 DU-1-<br>Composite | 100%                          | 100%  | 100%  | 100%  | 100%               | 100%     |

#### Table 17b: Effects of KCI on Neanthes arenaceodentata

| KCI Treatment (g/L                         | 2018 Comp<br>Mean % Survival |
|--------------------------------------------|------------------------------|
| Lab Control                                | 100                          |
| 0.25                                       | 100                          |
| 0.50                                       | 100                          |
| 1                                          | 50*                          |
| 2                                          | 0*                           |
| 4                                          | 0*                           |
| LC50                                       | 1.86 g/L KCl                 |
| Typical Response Range<br>(mean +/- 2SD) = | 1.15-2.51 g/L KCI            |

\*The survival response at this treatment was significantly less than the Lab Control response at p<0.05.

# 3.3.3 Effects of WETA Vallejo Ferry Terminal Sediments on Americamysis bahia

There was 100% survival in the Lab Control treatment, indicating an acceptable survival responses by the test organisms. There was 100% (2018 DU-1 Composite) survival in the Vallejo Ferry Terminal site water treatment. There were no significant reductions in survival in any of the modified elutriates, indicating that these modified elutriates were not toxic to mysids. The reference toxicant testing effects of KCI on Americamysis bahia indicated that the LC<sub>50</sub> (0.61 g/L KCI for DU-1) for these tests are consisted with the typical response range established by the reference test data base for Americamysis bahia.

| Elutriate Treatment | Mean % Survival |  |
|---------------------|-----------------|--|
| Lab Control         | 100%            |  |
| Site Water          | 100%            |  |
| 2018 DU-1 Composite | 100%            |  |

#### Table 18: Effects of Vallejo Ferry Terminal on Americamysis bahia

#### Table 18a: Effects of KCI on Americamysis bahia

| KCI Treatment (g/L                         | 2018 Comp<br>Mean % Survival |
|--------------------------------------------|------------------------------|
| Lab Control                                | 100                          |
| 0.25                                       | 97.5                         |
| 0.50                                       | 97.5                         |
| 1                                          | 77.5                         |
| 2                                          | 0*                           |
| 4                                          | 0*                           |
| LC 50                                      | 0.61 g/L KCl                 |
| Typical Response Range<br>(mean +/- 2SD) = | 0.31-0.70 g/L KCl            |

\*The survival response at this treatment was significantly less than the Lab Control response at p<0.05.

# 3.3.4 Biological Analytical QA/QC Summary

The biological testing of WETA Vallejo Ferry Terminal sediments incorporated standard QA/QC procedures to ensure that the test results were valid. Standard QA/QC procedures included the use of negative Lab Controls, positive Lab Controls, test replicates and measurements of water quality during testing.

Quality assurance procedures that were used for sediment testing are consistent with methods described in the EPA/USACE (1998). Sediments for the bioassay testing were stored approximately at ≤4°C and were used within the eight (8) week holding time period. Sediment interstitial water characteristics were within test acceptability limits at the start of the tests. Sediment elutriates were prepared using site water. The toxicity test overlying waters consisted of reconstituted waters.

# 4 **DISCUSSION**

To determine whether dredged material from the Vallejo Ferry Terminal sediments are suitable for placement at the Cullinan Ranch Restoration Site, sediment samples representatives of the material proposed for dredging were analyzed for chemical and physical parameters.

# 4.1 SEDIMENT AND CHEMISTRY EVALUATION

All contaminants, organic and inorganic, measured in the Vallejo Ferry Terminal sediments, were at concentration below dredge material acceptance criteria for determining suitability for placement at the Cullinan Ranch Restoration Site (with the exception of the slightly elevated concentrations of Cadmium, 2,6-Dimethylnaphthalene, Perylene). After running Cadmium on the duplicate composite sample and discrete sample, levels were still above the acceptable range for acceptance for Cullinan Ranch Restoration Site.

#### 4.2 MET EVALUATION

MET analysis for metals concentrations were below limits for SFRWQCB Basin Water Quality Objectives Concentrations.

# 4.3 **BIOLOGICAL EVALUATION**

The polychaete and amphipod elutriate tests prepared elicited no acute toxicity relative to effects observed in the Vallejo Ferry sediments.

#### 4.4 CONCULSIONS

Sediments proposed for dredging from the Vallejo Ferry Terminal were above the acceptable limits for beneficial reuse at Cullinan Ranch Restoration for Cadmium. Based on the material composition, level of the contaminant concentrations, WETA is requesting a suitability determination for placement as foundation material at Montezuma Wetlands Restoration Site.

#### **5 REFERENCES**

ASTM 2008. Standard Guide for Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. Method E 1367-99. American Society for Testing and Materials. Philadelphia, PA.

ASTM 2008. Standard Guide for Conducting Sediment Toxicity Tests with Marine and Estuarine Polychaetoous Annelids. Method E 1611-00. American Society for Testing and Materials. Philadelphia, PA.

Lee 1980. Reference toxicants in quality control of aquatic bioassays. IN: Aquatic Invertebrate Bioassays, ASTM STP 715. American Society for Testing and Materials. Philadelphia, PA.

Krone CA, Brown DW, Burrows DG, Bogar RG, Chan SL, Varanasi U (1989) A method for analysis of butyltin species and the measurements of Butyltins in sediment and English sole livers from Puget Sound. Mar. Environ. Res. 27:1-18.

Plumb RH, Jr. (1981) Procedure for Handling and Chemical Analysis of Sediment and Water Samples. Technical Report U.S. EPA /CE-81-1, prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, NY, for the U.S. Environmental Protection Agency/Corps of Army Engineer Waterways Experiment Station, Vicksburg, MS.

SFRWQCB (1998) Ambient concentrations of toxic chemicals in San Francisco Bay Sediments: Draft Staff Report. San Francisco Regional Water Quality Lab Control Board, Oakland, CA.

SFRWQCB (2000) Beneficial Reuse of Dredged Materials: Sediment Screening and Testing Guidelines: Draft Staff Report. San Francisco Regional Water Quality Lab Control Board, Oakland, CA.

SFRWQCB (2010) Order No R2-2010-0108 Waste Discharge Requirements for: U.S. Fish and Wildlife Service Cullinan Ranch Restoration Project. San Francisco Regional Water Quality Lab Control Board, Oakland, CA.

US EPA (1994) 'Methods for Assessing the Toxicity of Sediment – Associated Contaminants with Estuarine and Marine Amphipods'. EPA-600/R-94/025. U.S. EPA, Env. Research Laboratory, Narragansett, RI.

US EPA/ACOE (1995) QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Materials Evaluations. U.S. Environmental Protection Agency/U.S. Army Corps of Engineers. EPA/823/B-95/001. Office of Water. Washington, DC. EPA-823-B-95-001. April 1995.

US EPA/ACOE (1998) Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual (Inland Testing Manual). U.S. Environmental Protection Agency/U.S. Army Corps of Engineers. EPA/823/B-94/002. Office of Water. Washington, DC 20460.

US EPA (1998a) EPA Requirements for Quality Assurance Project Plans. United States Environmental Protection Agency, Quality Assurance Division, Washington, DC. 20460.

US EPA (1998b) EPA Guidance for Quality Assurance Project Plans. United States Environmental Protection Agency, Office of Research and Development, Washington, DC 20460.

USACE (2001) Public Notice 01-01. DMMO Guidelines for Implementing of the Inland Testing Manual in the San Francisco Bay Region. U.S. Army Corps of Engineers, US Army Corps of Engineers Operations and Readiness Branch, San Francisco, CA.

USFWS (2010) Section 7 Biological Opinion (Tracking #: SFB-2010-01/May 7, 2010/Intra-Service Section 7 Consultation on Implementation of the Proposed Cullinan Ranch Restoration Project, Napa and Solano Counties, CA. Prepared by the U.S. Fish and Wildlife Services, Sacramento, CA.

10 Commercial Blvd | Ste 100 | Novato, CA 94949 415.884.8011 | 800.668.3220 | f: 415.366.3388

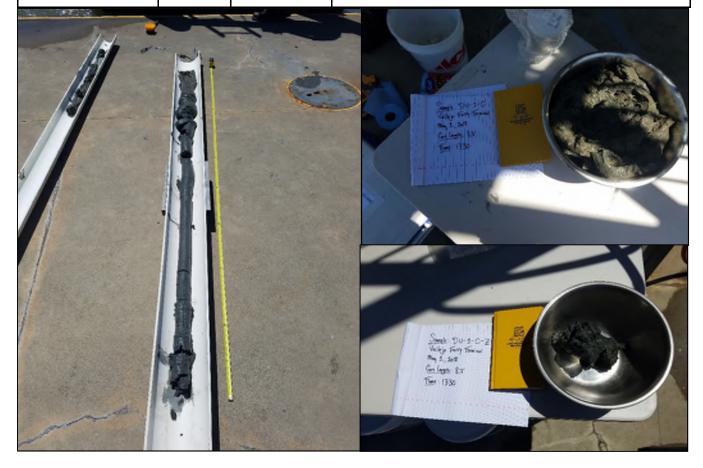
Appendix A Sampling Field Logs and Data Sheets

| Vallejo Ferry Terminal Sediment Sample Core Log |             |              |                                    |                  |      |  |  |  |
|-------------------------------------------------|-------------|--------------|------------------------------------|------------------|------|--|--|--|
| Sample Collection Data                          |             |              |                                    |                  |      |  |  |  |
| Sample Date:                                    | 5/1/2018    | Sample Time: | 1225                               | 1225 Sampler(s): |      |  |  |  |
| Sample ID:                                      | DU-1-A      |              | Notes:                             |                  |      |  |  |  |
| Northing:                                       | 222         | 7854.811     | Easting:                           | 6054372.392      | 2    |  |  |  |
| Corrected Mudline                               | Depth (ft): | -1.1         | Tide Height (ft):                  |                  | 1.5  |  |  |  |
| Target Core Length (ft):                        |             | 9.2          | Vibra Core Penetration Depth (ft): |                  | 10.3 |  |  |  |
| Core Length Recovered (ft):                     |             | 9.2          | Final Core Length (ft):            |                  | 9.2  |  |  |  |

| Sample Processing Information |           |               |                                                        |                               |                    |  |  |
|-------------------------------|-----------|---------------|--------------------------------------------------------|-------------------------------|--------------------|--|--|
| Process Date:                 | 5/1/2018  | Process Time: | 1235 Processor(s):                                     |                               | MT                 |  |  |
| Penetration Depth<br>(ft)     | Color     | Odor          | Material Description                                   |                               |                    |  |  |
| 10.3                          | Dark Grey | No Odor       | Dark Gray t                                            | o Black Fine Grained Bay Mud  | . Minor Bioclastic |  |  |
|                               |           |               | and Organi                                             | c Material Present. No Smell/ | No Sheen. Dense    |  |  |
|                               |           |               | throughout Core with lamination of Coarse Silt Topping |                               |                    |  |  |
|                               |           |               | Core.                                                  |                               |                    |  |  |
|                               |           |               |                                                        |                               |                    |  |  |



| Vallejo Ferry Terminal Sediment Sample Core Log |                        |              |                                    |                  |      |  |  |  |
|-------------------------------------------------|------------------------|--------------|------------------------------------|------------------|------|--|--|--|
|                                                 | Sample Collection Data |              |                                    |                  |      |  |  |  |
| Sample Date:                                    | 5/1/2018               | Sample Time: | 1115                               | 1115 Sampler(s): |      |  |  |  |
| Sample ID:                                      | DU-1-B                 |              | Notes:                             |                  |      |  |  |  |
| Northing:                                       | 222                    | 7795.975     | Easting:                           | 6054366.774      | ļ    |  |  |  |
| Corrected Mudline                               | Depth (ft):            | -8.5         | Tide Height (ft):                  |                  | 0.4  |  |  |  |
| Target Core Length (ft):                        |                        | 8.0          | Vibra Core Penetration Depth (ft): |                  | 16.5 |  |  |  |
| Core Length Recovered (ft):                     |                        | 8.0          | Final Core Length (ft):            |                  | 8.0  |  |  |  |


|                           | Sample Processing Information |               |                                                        |                              |                    |  |  |  |
|---------------------------|-------------------------------|---------------|--------------------------------------------------------|------------------------------|--------------------|--|--|--|
| Process Date:             | 5/1/2018                      | Process Time: | 1125 Processor(s): MT                                  |                              | MT                 |  |  |  |
| Penetration Depth<br>(ft) | Color                         | Odor          | Material Description                                   |                              |                    |  |  |  |
| 16.5                      | Dark Grey                     | No Odor       | Dark Gray t                                            | o Black Fine Grained Bay Mud | . Minor Bioclastic |  |  |  |
|                           |                               |               | and Organic Material Present. No Smell/No Sheen. Dense |                              |                    |  |  |  |
|                           |                               |               | throughout Core with lamination of Coarse Silt Topping |                              |                    |  |  |  |
|                           |                               |               | Core.                                                  |                              |                    |  |  |  |
|                           |                               |               |                                                        |                              |                    |  |  |  |





| v                           | Vallejo Ferry Terminal Sediment Sample Core Log |              |                                    |                  |      |  |  |  |  |
|-----------------------------|-------------------------------------------------|--------------|------------------------------------|------------------|------|--|--|--|--|
| Sample Collection Data      |                                                 |              |                                    |                  |      |  |  |  |  |
| Sample Date:                | 5/1/2018                                        | Sample Time: | 1330                               | 1330 Sampler(s): |      |  |  |  |  |
| Sample ID:                  | DU-1-C                                          |              | Notes:                             |                  |      |  |  |  |  |
| Northing:                   | 222                                             | 7743.032     | Easting:                           | 6054428.519      | )    |  |  |  |  |
| Corrected Mudline           | Depth (ft):                                     | -7.8         | Tide Height (ft):                  |                  | 2.9  |  |  |  |  |
| Target Core Length (ft):    |                                                 | 8.7          | Vibra Core Penetration Depth (ft): |                  | 16.5 |  |  |  |  |
| Core Length Recovered (ft): |                                                 | 8.7          | Final Core Length (ft):            |                  | 8.7  |  |  |  |  |

| Sample Processing Information |           |               |                                                                                                                                                                                        |  |  |  |  |
|-------------------------------|-----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Process Date:                 | 5/1/2018  | Process Time: | 1340 <b>Processor(s):</b> MT                                                                                                                                                           |  |  |  |  |
| Penetration Depth<br>(ft)     | Color     | Odor          | Material Description                                                                                                                                                                   |  |  |  |  |
| 16.5                          | Dark Grey | No Odor       | Dark Gray to Black Fine Grained Bay Mud. Minor Bioclastic<br>and Organic Material Present. No Smell/No Sheen. Dense<br>throughout Core with lamination of Coarse Silt Topping<br>Core. |  |  |  |  |
|                               |           |               |                                                                                                                                                                                        |  |  |  |  |



| Vallejo Ferry Terminal Sediment Sample Core Log |                        |              |                                    |             |     |  |  |  |
|-------------------------------------------------|------------------------|--------------|------------------------------------|-------------|-----|--|--|--|
|                                                 | Sample Collection Data |              |                                    |             |     |  |  |  |
| Sample Date:                                    | 5/2/2018               | Sample Time: |                                    | Sampler(s): |     |  |  |  |
| Sample ID:                                      | DU-1-D                 |              | Notes:                             |             |     |  |  |  |
| Northing:                                       | 222                    | 7727.875     | Easting:                           | 6054505.446 |     |  |  |  |
| Corrected Mudline                               | Depth (ft):            | -2.6         | Tide Height (ft):                  |             | 3.9 |  |  |  |
| Target Core Length (ft):                        |                        | 5.1          | Vibra Core Penetration Depth (ft): |             | 7.7 |  |  |  |
| Core Length Recovered (ft):                     |                        | 5.1          | Final Core Length (ft):            |             | 5.1 |  |  |  |

|                           | Sample Processing Information |               |                                                                                                                                                                                                              |  |    |  |  |  |  |
|---------------------------|-------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----|--|--|--|--|
| Process Date:             | 5/2/2018                      | Process Time: | <b>e:</b> 1330 <b>Processor(s):</b>                                                                                                                                                                          |  | MT |  |  |  |  |
| Penetration Depth<br>(ft) | Color                         | Odor          | Material Description                                                                                                                                                                                         |  |    |  |  |  |  |
| 7.7                       | Light Gray<br>to Gray         | No Odor       | Light Gray to Gray Fine Grained Bay Mud. Little to No<br>Bioclastic and Organic Material Present. No Smell/No<br>Sheen. Firm at Base to Loose at Top of Core with<br>Lamination of Coarse Silt Topping Core. |  |    |  |  |  |  |
|                           |                               |               |                                                                                                                                                                                                              |  |    |  |  |  |  |





10 Commercial Blvd | Ste 100 | Novato, CA 94949 415.884.8011 | 800.668.3220 | f: 415.366.3388

Appendix B Analytical Chemistry Laboratory Data Reports Submitted by Eurofins |Calscience

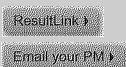
Page 1 of 76

# eurofins

# Calscience

# WORK ORDER NUMBER: 18-05-0353

### The difference is service




AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: FOTH CLE Engineering Client Project Name: WETA Attention: Wendy Rocha 15 Creek Road Marion, MA 02738-9999



Approved for release on 06/06/2018 by: Carla Hollowell Project Manager



Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 + TEL: (714) 895-5494 + FAX: (714) 894-7501 + www.calscience.com



Calscience

## Contents

|    | oject Name: WETA<br>der Number: 18-05-0353                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1  | Work Order Narrative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                         |
| 2  | Sample Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                         |
| 3  | Client Sample Data.<br>3.1 EPA 9060A Total Organic Carbon (Solid).<br>3.2 SM 2540 B (M) Total Solids (Solid).<br>3.3 EPA 6020 ICP/MS Metals (Solid).<br>3.4 EPA 7471A Mercury (Solid).<br>3.5 ASTM D4464 (M) Particle Size Laser (Solid).<br>3.6 EPA 8081A Organochlorine Pesticides (Solid).<br>3.7 EPA 8081A Chlordane LL (Solid).<br>3.8 EPA 8270C SIM OC Pesticides (Solid).<br>3.9 EPA 8270C SIM PAHs (Solid).<br>3.10 EPA 8270C SIM PCB Congeners (Solid).<br>3.11 Krone et al. Organotins (Solid). | 5<br>6<br>7<br>8<br>9<br>10<br>12<br>13<br>14<br>16<br>20 |
| 4  | Particle Size Results, 18-05-0353                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                        |
| 5  | Quality Control Sample Data.5.1 MS/MSD.5.2 PDS/PDSD.5.3 Sample Duplicate.5.4 LCS/LCSD.                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>22<br>31<br>32<br>33                                |
| 6  | Glossary of Terms and Qualifiers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42                                                        |
| 7  | Chain-of-Custody/Sample Receipt Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43                                                        |
| 8  | Subcontract Narrative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                        |
| 9  | Subcontract Results, Dioxins (Frontier), 18-05-0353                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47                                                        |
| 10 | Subcontract Report, Selenium (ALS), 18-05-0353                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55                                                        |

#### Work Order: 18-05-0353

Page 1 of 1

#### **Condition Upon Receipt:**

Samples were received under Chain-of-Custody (COC) on 05/04/18. They were assigned to Work Order 18-05-0353.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

#### Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

#### **Quality Control:**

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

#### Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

#### Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

#### **DoD Projects:**

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.



| Sample le | dentification      | Lab Number | Collection Date and Time | Number of<br>Containers | Matrix         |
|-----------|--------------------|------------|--------------------------|-------------------------|----------------|
| Attn:     | Wendy Rocha        |            |                          |                         |                |
|           |                    |            | Number of<br>Containers: |                         | 13             |
|           |                    |            | Date/Time<br>Received:   |                         | 05/04/18 07:30 |
|           | Marion, MA 02738-9 | 999        | PO Number:               |                         | 0017S414.20    |
|           | 15 Creek Road      |            | Project Name:            |                         | WETA           |
| Client:   | FOTH CLE Engineer  | ring       | Work Order:              |                         | 18-05-0353     |

|                             |               |                | Containers |          |
|-----------------------------|---------------|----------------|------------|----------|
| DU-1 Composite              | 18-05-0353-1  | 05/03/18 09:00 | 4          | Sediment |
| DU-1 Composite ARCHIVE ONLY | 18-05-0353-2  | 05/03/18 09:00 | 1          | Sediment |
| A-ARCHIVE ONLY              | 18-05-0353-3  | 05/01/18 12:25 | 1          | Sediment |
| A-Z-ARCHIVE ONLY            | 18-05-0353-4  | 05/01/18 12:25 | 1          | Sediment |
| B-ARCHIVE ONLY              | 18-05-0353-5  | 05/01/18 11:15 | 1          | Sediment |
| B-Z-ARCHIVE ONLY            | 18-05-0353-6  | 05/01/18 11:15 | 1          | Sediment |
| C-ARCHIVE ONLY              | 18-05-0353-7  | 05/01/18 13:30 | 1          | Sediment |
| C-Z-ARCHIVE ONLY            | 18-05-0353-8  | 05/01/18 13:30 | 1          | Sediment |
| D-ARCHIVE ONLY              | 18-05-0353-9  | 05/02/18 13:30 | 1          | Sediment |
| D-Z-ARCHIVE ONLY            | 18-05-0353-10 | 05/02/18 13:30 | 1          | Sediment |
|                             |               |                |            |          |



#### **Analytical Report**

| FOTH CLE Engineering               |                        |                        | Date Rece  | eived:     |                  |                       | 05/04/18    |
|------------------------------------|------------------------|------------------------|------------|------------|------------------|-----------------------|-------------|
| 15 Creek Road                      |                        |                        | Work Orde  | er:        |                  |                       | 18-05-0353  |
| Marion, MA 02738-9999              |                        |                        | Preparatio | n:         |                  |                       | N/A         |
|                                    |                        |                        | Method:    |            |                  |                       | EPA 9060A   |
|                                    |                        |                        | Units:     |            |                  |                       | %           |
| Project: WETA                      |                        |                        |            |            |                  | Pa                    | age 1 of 1  |
| Client Sample Number               | Lab Sample<br>Number   | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| DU-1 Composite                     | 18-05-0353-1-AA        | 05/03/18<br>09:00      | Sedimen    | t TOC 10   | 05/22/18         | 05/22/18<br>18:05     | 10522TOCL1  |
| Comment(s): - Results are reported | on a dry weight basis. |                        |            |            |                  |                       |             |
| Parameter                          |                        | <u>Result</u>          | <u>F</u>   | <u>L</u>   | DF               | Qua                   | alifiers    |
| Carbon, Total Organic              |                        | 2.5                    | 0          | .11        | 1.00             |                       |             |
| Method Blank                       | 099-06-013-1831        | N/A                    | Solid      | TOC 10     | 05/22/18         | 05/22/18<br>18:05     | 10522TOCL1  |
| Parameter                          |                        | <u>Result</u>          | Ē          | <u>L</u>   | DE               | Qua                   | alifiers    |
| Carbon, Total Organic              |                        | ND                     | 0          | .050       | 1.00             |                       |             |



| FOTH CLE Engineering  |                      |                        | Date Rece   | ived:      |                  |                       | 05/04/18      |
|-----------------------|----------------------|------------------------|-------------|------------|------------------|-----------------------|---------------|
| 15 Creek Road         |                      |                        | Work Orde   | r:         |                  |                       | 18-05-0353    |
| Marion, MA 02738-9999 |                      |                        | Preparation | า:         |                  |                       | N/A           |
|                       |                      |                        | Method:     |            |                  | S                     | SM 2540 B (M) |
|                       |                      |                        | Units:      |            |                  |                       | %             |
| Project: WETA         |                      |                        |             |            |                  | Pa                    | ige 1 of 1    |
| Client Sample Number  | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID   |
| DU-1 Composite        | 18-05-0353-1-AA      | 05/03/18<br>09:00      | Sediment    | N/A        | 05/09/18         | 05/09/18<br>15:30     | 10509TSB2     |
| Parameter             |                      | Result                 | RI          | =          | DF               | Qua                   | alifiers      |
| Solids, Total         |                      | 45.0                   | 0.          | 100        | 1.00             |                       |               |
| Method Blank          | 099-05-019-4033      | N/A                    | Solid       | N/A        | 05/09/18         | 05/09/18<br>15:30     | 10509TSB2     |
| Parameter             |                      | Result                 | RI          | =          | DF               | Qua                   | alifiers      |
| Solids, Total         |                      | ND                     | 0.          | 100        | 1.00             |                       |               |



| FOTH CLE Engineering                    |                      |                        | Date Recei  | ved:       |                  |                       | 05/04/18    |
|-----------------------------------------|----------------------|------------------------|-------------|------------|------------------|-----------------------|-------------|
| 15 Creek Road                           |                      |                        | Work Order  | r:         |                  |                       | 18-05-0353  |
| Marion, MA 02738-9999                   |                      |                        | Preparation | n:         |                  |                       | EPA 3050B   |
|                                         |                      |                        | Method:     |            |                  |                       | EPA 6020    |
|                                         |                      |                        | Units:      |            |                  |                       | mg/kg       |
| Project: WETA                           |                      |                        |             |            |                  | Pa                    | ige 1 of 1  |
| Client Sample Number                    | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| DU-1 Composite                          | 18-05-0353-1-CC      | 05/03/18<br>09:00      | Sediment    | ICP/MS 03  | 05/07/18         | 05/09/18<br>18:57     | 180507L01E  |
| Comment(s): - Results are reported on a | dry weight basis.    | -                      |             |            |                  |                       |             |
| Parameter                               |                      | <u>Result</u>          | <u>RL</u>   | :          | <u>DF</u>        | Qua                   | alifiers    |
| Arsenic                                 |                      | 13.5                   | 0.2         | 222        | 1.00             |                       |             |
| Cadmium                                 |                      | 0.875                  | 0.2         | 222        | 1.00             |                       |             |
| Chromium                                |                      | 98.8                   | 0.2         | 222        | 1.00             |                       |             |
| Copper                                  |                      | 66.5                   | 0.2         | 222        | 1.00             |                       |             |
| Lead                                    |                      | 26.6                   | 0.2         | 222        | 1.00             |                       |             |
| Nickel                                  |                      | 104                    | 0.2         | 222        | 1.00             |                       |             |
| Silver                                  |                      | 0.350                  | 0.2         | 222        | 1.00             |                       |             |
| Zinc                                    |                      | 141                    | 2.2         | 22         | 1.00             |                       |             |
| Method Blank                            | 099-15-254-604       | N/A                    | Solid       | ICP/MS 03  | 05/07/18         | 05/09/18<br>18:42     | 180507L01E  |
| Parameter                               |                      | Result                 | RL          | :          | DF               | Qua                   | alifiers    |
| Arsenic                                 |                      | ND                     | 0.1         | 00         | 1.00             |                       |             |
| Cadmium                                 |                      | ND                     | 0.1         | 00         | 1.00             |                       |             |
| Chromium                                |                      | ND                     | 0.1         | 00         | 1.00             |                       |             |
| Copper                                  |                      | ND                     | 0.1         | 00         | 1.00             |                       |             |
| Lead                                    |                      | ND                     | 0.1         | 00         | 1.00             |                       |             |
| Nickel                                  |                      | ND                     | 0.1         | 00         | 1.00             |                       |             |
| Silver                                  |                      | ND                     | 0.1         | 00         | 1.00             |                       |             |
| Zinc                                    |                      | ND                     | 1.0         | 00         | 1.00             |                       |             |
|                                         |                      |                        |             |            |                  |                       |             |



| FOTH CLE Engineering                    |                      |                        | Date Rece  | ived:      |                  |                       | 05/04/18      |
|-----------------------------------------|----------------------|------------------------|------------|------------|------------------|-----------------------|---------------|
| 15 Creek Road                           |                      |                        | Work Orde  | er:        |                  |                       | 18-05-0353    |
| Marion, MA 02738-9999                   |                      |                        | Preparatio | n:         |                  | EP.                   | A 7471A Total |
|                                         |                      |                        | Method:    |            |                  |                       | EPA 7471A     |
|                                         |                      |                        | Units:     |            |                  |                       | mg/kg         |
| Project: WETA                           |                      |                        |            |            |                  | Ра                    | ge 1 of 1     |
| Client Sample Number                    | Lab Sample<br>Number | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID   |
| DU-1 Composite                          | 18-05-0353-1-CC      | 05/03/18<br>09:00      | Sediment   | Mercury 08 | 05/09/18         | 05/09/18<br>14:13     | 180509L01E    |
| Comment(s): - Results are reported on a | dry weight basis.    |                        |            |            |                  |                       |               |
| Parameter                               |                      | <u>Result</u>          | <u>RI</u>  | L          | <u>DF</u>        | Qua                   | lifiers       |
| Mercury                                 |                      | 0.286                  | 0.         | 0444       | 1.00             |                       |               |
| Method Blank                            | 099-16-278-413       | N/A                    | Solid      | Mercury 08 | 05/09/18         | 05/09/18<br>14:09     | 180509L01E    |
| Parameter                               |                      | Result                 | RI         | <u> </u>   | DF               | Qua                   | lifiers       |
| Mercury                                 |                      | ND                     | 0.         | 0207       | 1.00             |                       |               |



| FOTH CLE Engineering                |                      |                        | Date Recei  | ved:          |                  |                       | 05/04/18     |
|-------------------------------------|----------------------|------------------------|-------------|---------------|------------------|-----------------------|--------------|
| 15 Creek Road                       |                      |                        | Work Order  | r:            |                  |                       | 18-05-0353   |
| Marion, MA 02738-9999               |                      |                        | Preparation | on:           |                  |                       | N/A          |
|                                     | Method:              |                        |             |               |                  | AS                    | TM D4464 (M) |
|                                     |                      |                        | Units:      |               |                  |                       | %            |
| Project: WETA                       |                      |                        |             |               |                  | Pa                    | ige 1 of 1   |
| Client Sample Number                | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument    | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID  |
| DU-1 Composite                      | 18-05-0353-1-D       | 05/03/18<br>09:00      | Sediment    | LPSA 1        | N/A              | 05/04/18<br>17:31     |              |
| Parameter                           |                      |                        |             | <u>Result</u> |                  | Qualifiers            | ·            |
| Clay (less than 0.00391mm)          |                      |                        |             | 28.82         |                  |                       |              |
| Silt (0.00391 to 0.0625mm)          |                      |                        |             | 62.43         |                  |                       |              |
| Total Silt and Clay (0 to 0.0625mm) |                      |                        |             | 91.25         |                  |                       |              |
| Very Fine Sand (0.0625 to 0.125mm)  |                      |                        |             | 6.95          |                  |                       |              |
| Fine Sand (0.125 to 0.25mm)         |                      |                        |             | 1.80          |                  |                       |              |
| Medium Sand (0.25 to 0.5mm)         |                      |                        |             | ND            |                  |                       |              |
| Coarse Sand (0.5 to 1mm)            |                      |                        |             | ND            |                  |                       |              |
| Very Coarse Sand (1 to 2mm)         |                      |                        |             | ND            |                  |                       |              |
| Gravel (greater than 2mm)           |                      |                        |             | ND            |                  |                       |              |
|                                     |                      |                        |             |               |                  |                       |              |



| FOTH CLE Engineering                    |                      |                        | Date Receiv | ved:         |                   |                       | 05/04/18       |
|-----------------------------------------|----------------------|------------------------|-------------|--------------|-------------------|-----------------------|----------------|
| 15 Creek Road                           |                      |                        | Work Order  | :            |                   |                       | 18-05-0353     |
| Marion, MA 02738-9999                   |                      |                        | Preparation | :            |                   |                       | EPA 3541       |
| ,                                       |                      |                        | Method:     |              |                   |                       | EPA 8081A      |
|                                         |                      |                        | Units:      |              |                   |                       | ug/kg          |
| Project: WETA                           |                      |                        | ornito.     |              |                   | Pa                    | ge 1 of 2      |
| Client Sample Number                    | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument   | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID    |
| DU-1 Composite                          | 18-05-0353-1-CC      | 05/03/18<br>09:00      | Sediment    | GC 44        | 05/11/18          | 05/17/18<br>09:55     | 180511L25      |
| Comment(s): - Results are reported on a | a dry weight basis.  |                        |             |              |                   |                       |                |
| Parameter                               |                      | Result                 | <u>RL</u>   |              | DF                | Qua                   | <u>lifiers</u> |
| Aldrin                                  |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| Alpha-BHC                               |                      | ND                     | 4.4         |              | 1.00              |                       |                |
| Beta-BHC                                |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| Delta-BHC                               |                      | ND                     | 4.4         |              | 1.00              |                       |                |
| Gamma-BHC                               |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| Dieldrin                                |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| 2,4'-DDD                                |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| 2,4'-DDE                                |                      | ND                     | 4.4         |              | 1.00              |                       |                |
| 2,4'-DDT                                |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| 4,4'-DDD                                |                      | 2.3                    | 2.2         |              | 1.00              |                       |                |
| 4,4'-DDE                                |                      | 3.3                    | 2.2         |              | 1.00              |                       |                |
| 4,4'-DDT                                |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| Endosulfan I                            |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| Endosulfan II                           |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| Endosulfan Sulfate                      |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| Endrin                                  |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| Endrin Aldehyde                         |                      | ND                     | 2.2         |              | 1.00              |                       |                |
| Toxaphene                               |                      | ND                     | 44          |              | 1.00              |                       |                |
| Surrogate                               |                      | <u>Rec. (%)</u>        | <u>Co</u>   | ntrol Limits | <u>Qualifiers</u> |                       |                |
| 2,4,5,6-Tetrachloro-m-Xylene            |                      | 59                     | 25-         | 145          |                   |                       |                |
| Decachlorobiphenyl                      |                      | 95                     | 24-         | 168          |                   |                       |                |



| Parameter<br>Aldrin   |                      | <u>Result</u><br>ND    |            | <u>.0</u>  | <u>DF</u><br>1.00 | Qua                   | alifiers    |  |
|-----------------------|----------------------|------------------------|------------|------------|-------------------|-----------------------|-------------|--|
| Method Blank          | 099-12-858-542       | N/A                    | Solid      | GC 44      | 05/11/18          | 05/17/18<br>06:27     | 180511L25   |  |
| Client Sample Number  | Lab Sample<br>Number | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID |  |
| Project: WETA         |                      |                        |            |            |                   | Pa                    | ge 2 of 2   |  |
|                       |                      |                        | Units:     |            |                   |                       | ug/kg       |  |
|                       |                      |                        | Method:    | EPA 8081A  |                   |                       |             |  |
| Marion, MA 02738-9999 |                      |                        | Preparatio | EPA 3541   |                   |                       |             |  |
| 15 Creek Road         |                      |                        | Work Ord   | 18-05-035  |                   |                       |             |  |
| FOTH CLE Engineering  |                      |                        | Date Rece  | eived:     |                   | 05/04/18              |             |  |

Ald Alpha-BHC ND 2.0 1.00 Beta-BHC ND 1.0 1.00 Delta-BHC ND 2.0 1.00 Gamma-BHC ND 1.0 1.00 Dieldrin ND 1.0 1.00 2,4'-DDD ND 1.0 1.00 2,4'-DDE ND 2.0 1.00 2,4'-DDT ND 1.0 1.00 4,4'-DDD ND 1.0 1.00 4,4'-DDE ND 1.0 1.00 4,4'-DDT ND 1.0 1.00 Endosulfan I ND 1.0 1.00 Endosulfan II ND 1.0 1.00 Endosulfan Sulfate ND 1.0 1.00 Endrin ND 1.0 1.00 Endrin Aldehyde ND 1.0 1.00 Toxaphene ND 20 1.00 **Control Limits Qualifiers** Surrogate <u>Rec. (%)</u> 2,4,5,6-Tetrachloro-m-Xylene 69 25-145 Decachlorobiphenyl 96 24-168



| FOTH CLE Engineering                    |                      |                        | Date Receiv    | /ed:              |                   |                       | 05/04/18          |
|-----------------------------------------|----------------------|------------------------|----------------|-------------------|-------------------|-----------------------|-------------------|
| 15 Creek Road                           |                      |                        | Work Order     | :                 |                   |                       | 18-05-0353        |
| Marion, MA 02738-9999                   |                      |                        | Preparation    | :                 |                   |                       | EPA 3545          |
|                                         |                      |                        | Method:        |                   |                   |                       | EPA 8081A         |
|                                         |                      |                        | Units:         |                   |                   |                       | ug/kg             |
| Project: WETA                           |                      |                        |                |                   |                   | Pa                    | age 1 of 1        |
| Client Sample Number                    | Lab Sample<br>Number | Date/Time<br>Collected | Matrix         | Instrument        | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID       |
| DU-1 Composite                          | 18-05-0353-1-CC      | 05/03/18<br>09:00      | Sediment       | GC 44             | 05/15/18          | 05/17/18<br>14:40     | 180515L03         |
| Comment(s): - Results are reported on a | a dry weight basis.  |                        |                |                   |                   |                       |                   |
| - Results were evaluated t              | o the MDL (DL), cond | centrations >=         | to the MDL (DL | .) but < RL (LOC  | Q), if found, are | qualified with        | a "J" flag.       |
| Parameter                               | Resu                 | <u>ilt</u>             | <u>RL</u>      | MDL               | DF                |                       | <u>Qualifiers</u> |
| Chlordane                               | ND                   |                        | 1.1            | 0.36              | 1.00              |                       |                   |
| Surrogate                               | Rec.                 | <u>(%)</u>             | Control Limits | <u>Qualifiers</u> |                   |                       |                   |
| 2,4,5,6-Tetrachloro-m-Xylene            | 99                   |                        | 24-168         |                   |                   |                       |                   |
| Method Blank                            | 099-15-817-44        | N/A                    | Solid          | GC 44             | 05/15/18          | 05/17/18<br>06:55     | 180515L03         |
| Comment(s): - Results were evaluated t  | o the MDL (DL), cond | centrations >=         | to the MDL (DL | _) but < RL (LOC  | Q), if found, are | qualified with        | a "J" flag.       |
| Parameter                               | Resu                 | <u>ilt</u>             | <u>RL</u>      | MDL               | DF                |                       | Qualifiers        |
| Chlordane                               | ND                   |                        | 0.50           | 0.16              | 1.00              |                       |                   |
| Surrogate                               | Rec.                 | <u>(%)</u>             | Control Limits | <u>Qualifiers</u> |                   |                       |                   |
| 2,4,5,6-Tetrachloro-m-Xylene            | 83                   |                        | 24-168         |                   |                   |                       |                   |



| FOTH CLE Engineering                 |                       |                        | Date Rec  | eived:         |                   |                       | 05/04/18    |
|--------------------------------------|-----------------------|------------------------|-----------|----------------|-------------------|-----------------------|-------------|
| 15 Creek Road                        |                       |                        | Work Orc  | er:            |                   |                       | 18-05-0353  |
| Marion, MA 02738-9999                |                       |                        | Preparati | on:            |                   |                       | EPA 3541    |
|                                      |                       |                        | Method:   |                |                   | EPA 827               | OC PEST-SIM |
|                                      |                       |                        | Units:    |                |                   |                       | ug/kg       |
| Project: WETA                        |                       |                        |           |                |                   | Pa                    | ige 1 of 1  |
| Client Sample Number                 | Lab Sample<br>Number  | Date/Time<br>Collected | Matrix    | Instrument     | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID |
| DU-1 Composite                       | 18-05-0353-1-CC       | 05/03/18<br>09:00      | Sedime    | nt GC/MS BBB   | 05/11/18          | 05/16/18<br>16:39     | 180511L24   |
| Comment(s): - Results are reported o | n a dry weight basis. |                        |           |                |                   |                       |             |
| Parameter                            |                       | Result                 |           | <u> </u>       | <u>DF</u>         | Qua                   | alifiers    |
| Heptachlor                           |                       | ND                     |           | 0.44           | 1.00              |                       |             |
| Heptachlor Epoxide                   |                       | ND                     |           | ).44           | 1.00              |                       |             |
| <u>Surrogate</u>                     |                       | <u>Rec. (%)</u>        |           | Control Limits | <u>Qualifiers</u> |                       |             |
| Dibutylchlorendate                   |                       | 97                     | :         | 25-200         |                   |                       |             |
| 2,4,5,6-Tetrachloro-m-Xylene         |                       | 80                     | :         | 25-200         |                   |                       |             |
| Method Blank                         | 099-16-154-93         | N/A                    | Solid     | GC/MS BBB      | 05/11/18          | 05/16/18<br>15:39     | 180511L24   |
| Parameter                            |                       | Result                 |           | <u> </u>       | DF                | Qua                   | alifiers    |
| Heptachlor                           |                       | ND                     |           | 0.20           | 1.00              |                       |             |
| Heptachlor Epoxide                   |                       | ND                     |           | 0.20           | 1.00              |                       |             |
| Surrogate                            |                       | <u>Rec. (%)</u>        |           | Control Limits | Qualifiers        |                       |             |
| Dibutylchlorendate                   |                       | 121                    | :         | 25-200         |                   |                       |             |
| 2,4,5,6-Tetrachloro-m-Xylene         |                       | 86                     | :         | 25-200         |                   |                       |             |



Page 14 of 76

| FOTH CLE Engineering                    |                      |                        | Date Recei  | ved:         |                   |                       | 05/04/18    |
|-----------------------------------------|----------------------|------------------------|-------------|--------------|-------------------|-----------------------|-------------|
| 15 Creek Road                           |                      |                        | Work Order  | r:           |                   |                       | 18-05-0353  |
| Marion, MA 02738-9999                   |                      |                        | Preparation | 1:           |                   |                       | EPA 3541    |
|                                         |                      |                        | Method:     |              |                   | EPA 827               | OC SIM PAHs |
|                                         |                      |                        | Units:      |              |                   |                       | ug/kg       |
| Project: WETA                           |                      |                        | ormo.       |              |                   | Pa                    | ige 1 of 2  |
|                                         |                      |                        |             |              |                   | 10                    |             |
| Client Sample Number                    | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument   | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID |
| DU-1 Composite                          | 18-05-0353-1-C       | 05/03/18<br>09:00      | Sediment    | GC/MS AAA    | 05/09/18          | 05/12/18<br>00:55     | 180509L14   |
| Comment(s): - Results are reported on a | a dry weight basis.  |                        |             |              |                   |                       |             |
| Parameter                               |                      | <u>Result</u>          | RL          |              | <u>DF</u>         | Qua                   | alifiers    |
| Dibenzothiophene                        |                      | ND                     | 22          |              | 1.00              |                       |             |
| Acenaphthene                            |                      | ND                     | 22          |              | 1.00              |                       |             |
| Acenaphthylene                          |                      | ND                     | 22          |              | 1.00              |                       |             |
| Anthracene                              |                      | ND                     | 22          |              | 1.00              |                       |             |
| Benzo (a) Anthracene                    |                      | 53                     | 22          |              | 1.00              |                       |             |
| Benzo (a) Pyrene                        |                      | 98                     | 22          |              | 1.00              |                       |             |
| Benzo (b) Fluoranthene                  |                      | 87                     | 22          |              | 1.00              |                       |             |
| Benzo (e) Pyrene                        |                      | 62                     | 22          |              | 1.00              |                       |             |
| Benzo (g,h,i) Perylene                  |                      | 82                     | 22          |              | 1.00              |                       |             |
| Benzo (k) Fluoranthene                  |                      | 60                     | 22          |              | 1.00              |                       |             |
| Biphenyl                                |                      | ND                     | 22          |              | 1.00              |                       |             |
| Chrysene                                |                      | 59                     | 22          |              | 1.00              |                       |             |
| Dibenz (a,h) Anthracene                 |                      | ND                     | 22          |              | 1.00              |                       |             |
| 2,6-Dimethylnaphthalene                 |                      | 35                     | 22          |              | 1.00              |                       |             |
| Fluoranthene                            |                      | 110                    | 22          |              | 1.00              |                       |             |
| Fluorene                                |                      | ND                     | 22          |              | 1.00              |                       |             |
| Indeno (1,2,3-c,d) Pyrene               |                      | 57                     | 22          |              | 1.00              |                       |             |
| 2-Methylnaphthalene                     |                      | ND                     | 22          |              | 1.00              |                       |             |
| 1-Methylnaphthalene                     |                      | ND                     | 22          |              | 1.00              |                       |             |
| 1-Methylphenanthrene                    |                      | ND                     | 22          |              | 1.00              |                       |             |
| Naphthalene                             |                      | ND                     | 22          |              | 1.00              |                       |             |
| Perylene                                |                      | 220                    | 22          |              | 1.00              |                       |             |
| Phenanthrene                            |                      | 32                     | 22          |              | 1.00              |                       |             |
| Pyrene                                  |                      | 120                    | 22          |              | 1.00              |                       |             |
| 1,6,7-Trimethylnaphthalene              |                      | ND                     | 22          |              | 1.00              |                       |             |
| Surrogate                               |                      | <u>Rec. (%)</u>        | <u>Co</u>   | ntrol Limits | <u>Qualifiers</u> |                       |             |
| 2-Fluorobiphenyl                        |                      | 69                     | 14-         | -146         |                   |                       |             |
| Nitrobenzene-d5                         |                      | 33                     | 18-         | -162         |                   |                       |             |
| p-Terphenyl-d14                         |                      | 92                     | 34-         | -148         |                   |                       |             |



FOTH CLE Engineering

p-Terphenyl-d14

Date Received:

Page 15 of 76

05/04/18

| 15 Creek Road<br>Marion, MA 02738-9999 |                | Work Order<br>Preparation<br>Method:<br>Units: | 18-05-0353<br>EPA 3541<br>EPA 8270C SIM PAHs<br>ug/kg |                  |                       |             |
|----------------------------------------|----------------|------------------------------------------------|-------------------------------------------------------|------------------|-----------------------|-------------|
| Project: WETA                          |                |                                                |                                                       |                  | Pa                    | age 2 of 2  |
| Client Sample Number Lab Sar<br>Number |                | e Matrix                                       | Instrument                                            | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| Method Blank 099-14-                   | 097-268 N/A    | Solid                                          | GC/MS AAA                                             | 05/09/18         | 05/11/18<br>14:51     | 180509L14   |
| Parameter                              | Result         | RL                                             |                                                       | DF               | Qua                   | alifiers    |
| Dibenzothiophene                       | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Acenaphthene                           | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Acenaphthylene                         | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Anthracene                             | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Benzo (a) Anthracene                   | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Benzo (a) Pyrene                       | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Benzo (b) Fluoranthene                 | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Benzo (e) Pyrene                       | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Benzo (g,h,i) Perylene                 | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Benzo (k) Fluoranthene                 | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Biphenyl                               | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Chrysene                               | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Dibenz (a,h) Anthracene                | ND             | 10                                             |                                                       | 1.00             |                       |             |
| 2,6-DimethyInaphthalene                | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Fluoranthene                           | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Fluorene                               | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Indeno (1,2,3-c,d) Pyrene              | ND             | 10                                             |                                                       | 1.00             |                       |             |
| 2-Methylnaphthalene                    | ND             | 10                                             |                                                       | 1.00             |                       |             |
| 1-Methylnaphthalene                    | ND             | 10                                             |                                                       | 1.00             |                       |             |
| 1-Methylphenanthrene                   | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Naphthalene                            | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Perylene                               | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Phenanthrene                           | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Pyrene                                 | ND             | 10                                             |                                                       | 1.00             |                       |             |
| 1,6,7-Trimethylnaphthalene             | ND             | 10                                             |                                                       | 1.00             |                       |             |
| Surrogate                              | <u>Rec. (%</u> | <u>) Co</u>                                    | ntrol Limits                                          | Qualifiers       |                       |             |
| 2-Fluorobiphenyl                       | 90             | 14-                                            | 146                                                   |                  |                       |             |
| Nitrobenzene-d5                        | 64             | 18-                                            | 162                                                   |                  |                       |             |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

34-148

94



FOTH CLE Engineering

Date Received:

05/04/18

| Project: WE      |                           |                        |                        | Method:<br>Units: |            | EPA 8270C SIM PCB Congeners<br>ug/kg<br>Page 1 of 4 |                       |             |  |
|------------------|---------------------------|------------------------|------------------------|-------------------|------------|-----------------------------------------------------|-----------------------|-------------|--|
| Client Sample    | Number                    | Lab Sample<br>Number   | Date/Time<br>Collected | Matrix            | Instrument | Date<br>Prepared                                    | Date/Time<br>Analyzed | QC Batch ID |  |
| DU-1 Compos      | site                      | 18-05-0353-1-CC        | 05/03/18<br>09:00      | Sediment          | GC/MS HHH  | 05/11/18                                            | 05/16/18<br>19:58     | 180511L23   |  |
| Comment(s):      | - Results are reported of | on a dry weight basis. |                        |                   |            |                                                     |                       |             |  |
| Parameter        |                           |                        | <u>Result</u>          | <u>RL</u>         |            | <u>DF</u>                                           | Qua                   | lifiers     |  |
| PCB005/008       |                           |                        | ND                     | 0.8               |            | 1.00                                                |                       |             |  |
| PCB018           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB028           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB031           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB033           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB044           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB049           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB052<br>PCB056 |                           |                        | ND<br>ND               | 0.4<br>0.4        |            | 1.00<br>1.00                                        |                       |             |  |
| PCB050<br>PCB060 |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB066           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB070           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB074           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB087           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB095           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB097           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB099           |                           |                        | 0.68                   | 0.4               |            | 1.00                                                |                       |             |  |
| PCB101           |                           |                        | 0.96                   | 0.4               |            | 1.00                                                |                       |             |  |
| PCB105           |                           |                        | ND                     | 0.4               |            | 1.00                                                |                       |             |  |
| PCB110           |                           |                        | 0.75                   | 0.4               |            | 1.00                                                |                       |             |  |
| PCB118           |                           |                        | 0.94                   | 0.4               |            | 1.00                                                |                       |             |  |
| PCB128           |                           |                        | ND                     | 0.4               | 4          | 1.00                                                |                       |             |  |
| PCB132/153       |                           |                        | 1.4                    | 0.8               | 9          | 1.00                                                |                       |             |  |
| PCB138/158       |                           |                        | ND                     | 0.8               |            | 1.00                                                |                       |             |  |
| PCB141           |                           |                        | ND                     | 0.4               | 4          | 1.00                                                |                       |             |  |
| PCB149           |                           |                        | 0.96                   | 0.4               | 4          | 1.00                                                |                       |             |  |
| PCB151           |                           |                        | ND                     | 0.4               | 4          | 1.00                                                |                       |             |  |
| PCB156           |                           |                        | ND                     | 0.4               | 4          | 1.00                                                |                       |             |  |
| PCB170           |                           |                        | 0.51                   | 0.4               | 4          | 1.00                                                |                       |             |  |
| PCB174           |                           |                        | ND                     | 0.4               | 4          | 1.00                                                |                       |             |  |
| PCB177           |                           |                        | ND                     | 0.4               | 4          | 1.00                                                |                       |             |  |
| PCB180           |                           |                        | ND                     | 0.4               | 4          | 1.00                                                |                       |             |  |
| PCB183           |                           |                        | ND                     | 0.4               | 4          | 1.00                                                |                       |             |  |
|                  |                           |                        |                        |                   |            |                                                     |                       |             |  |



| FOTH CLE Engineering  | Da              | ate Received:  |                             | 05/04/18    |  |  |
|-----------------------|-----------------|----------------|-----------------------------|-------------|--|--|
| 15 Creek Road         | W               | ork Order:     |                             | 18-05-0353  |  |  |
| Marion, MA 02738-9999 | Pr              | eparation:     | EPA 3541                    |             |  |  |
|                       | M               | ethod:         | EPA 8270C SIM PCB Congeners |             |  |  |
|                       | Ur              | nits:          |                             | ug/kg       |  |  |
| Project: WETA         |                 |                |                             | Page 2 of 4 |  |  |
| Parameter             | Result          | <u>RL</u>      | DF                          | Qualifiers  |  |  |
| PCB194                | ND              | 0.44           | 1.00                        |             |  |  |
| PCB195                | ND              | 0.44           | 1.00                        |             |  |  |
| PCB201                | ND              | 0.44           | 1.00                        |             |  |  |
| PCB203                | ND              | 0.44           | 1.00                        |             |  |  |
| Surrogate             | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u>           |             |  |  |
| 2-Fluorobiphenyl      | 85              | 14-146         |                             |             |  |  |
| p-Terphenyl-d14       | 104             | 34-148         |                             |             |  |  |



| FOTH CLE Engineering  | Date Received: | 05/04/18                    |
|-----------------------|----------------|-----------------------------|
| 15 Creek Road         | Work Order:    | 18-05-0353                  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3541                    |
|                       | Method:        | EPA 8270C SIM PCB Congeners |
|                       | Units:         | ug/kg                       |
| Project: WETA         |                | Page 3 of 4                 |

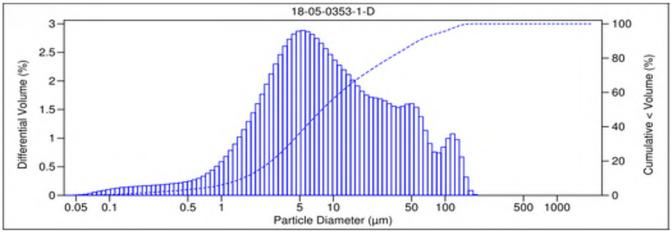
| Client Sample Number | Lab Sample<br>Number | Date/Time<br>Collected | Matrix   | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|----------------------|------------------------|----------|------------|------------------|-----------------------|-------------|
| Method Blank         | 099-16-418-306       | N/A                    | Solid    | GC/MS HHH  | 05/11/18         | 05/16/18<br>18:24     | 180511L23   |
| Parameter            |                      | Result                 | <u>R</u> | <u> </u>   | DF               | Qua                   | lifiers     |
| PCB005/008           |                      | ND                     | 0        | .40        | 1.00             |                       |             |
| PCB018               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB028               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB031               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB033               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB044               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB049               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB052               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB056               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB060               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB066               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB070               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB074               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB087               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB095               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB097               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB099               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB101               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB105               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB110               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB118               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB128               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB132/153           |                      | ND                     | 0        | .40        | 1.00             |                       |             |
| PCB138/158           |                      | ND                     | 0        | .40        | 1.00             |                       |             |
| PCB141               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB149               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB151               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB156               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB170               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB174               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB177               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB180               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB183               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB187               |                      | ND                     | 0        | .20        | 1.00             |                       |             |
| PCB194               |                      | ND                     | 0        | .20        | 1.00             |                       |             |



| FOTH CLE Engineering  | Date            | e Received:    |                          | 05/04/18    |  |  |  |
|-----------------------|-----------------|----------------|--------------------------|-------------|--|--|--|
| 15 Creek Road         | Wor             | k Order:       |                          | 18-05-0353  |  |  |  |
| Marion, MA 02738-9999 | Pre             | paration:      | EPA 354                  |             |  |  |  |
|                       | Met             | hod:           | EPA 8270C SIM PCB Congen |             |  |  |  |
|                       | Unit            | s:             |                          | ug/kg       |  |  |  |
| Project: WETA         |                 |                |                          | Page 4 of 4 |  |  |  |
| Parameter             | Result          | <u>RL</u>      | DF                       | Qualifiers  |  |  |  |
| PCB195                | ND              | 0.20           | 1.00                     |             |  |  |  |
| PCB201                | ND              | 0.20           | 1.00                     |             |  |  |  |
| PCB203                | ND              | 0.20           | 1.00                     |             |  |  |  |
| Surrogate             | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u>        |             |  |  |  |
| 2-Fluorobiphenyl      | 79              | 14-146         |                          |             |  |  |  |
| p-Terphenyl-d14       | 102             | 34-148         |                          |             |  |  |  |



| FOTH CLE Engineering                    |                      |                        | Date Recei  | 05/04/18     |                  |                       |                 |  |
|-----------------------------------------|----------------------|------------------------|-------------|--------------|------------------|-----------------------|-----------------|--|
| 15 Creek Road                           |                      |                        | Work Orde   | r:           |                  | 18-05-0353            |                 |  |
| Marion, MA 02738-9999                   |                      |                        | Preparatior |              | EPA 3550B (M)    |                       |                 |  |
|                                         |                      |                        | Method:     |              |                  | Organotins I          | by Krone et al. |  |
|                                         |                      |                        | Units:      |              |                  | 5                     | ug/kg           |  |
| Project: WETA                           |                      |                        |             |              |                  | Pa                    | ge 1 of 1       |  |
| Client Sample Number                    | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID     |  |
| DU-1 Composite                          | 18-05-0353-1-CC      | 05/03/18<br>09:00      | Sediment    | GC/MS Y      | 05/10/18         | 05/15/18<br>16:07     | 180510L17       |  |
| Comment(s): - Results are reported on a | dry weight basis.    |                        |             |              |                  |                       |                 |  |
| Parameter                               |                      | Result                 | RL          |              | <u>DF</u>        | Qua                   | <u>llifiers</u> |  |
| Dibutyltin                              |                      | ND                     | 6.7         | ,            | 1.00             |                       |                 |  |
| MonobutyItin                            |                      | ND                     | 6.7         | •            | 1.00             |                       |                 |  |
| Tetrabutyltin                           |                      | ND                     | 6.7         | ,            | 1.00             |                       |                 |  |
| Tributyltin                             |                      | ND                     | 6.7         | ,            | 1.00             |                       |                 |  |
| <u>Surrogate</u>                        |                      | <u>Rec. (%)</u>        | <u>Cc</u>   | ntrol Limits | Qualifiers       |                       |                 |  |
| Tripentyltin                            |                      | 74                     | 27          | -135         |                  |                       |                 |  |
| Method Blank                            | 099-07-016-1589      | N/A                    | Solid       | GC/MS Y      | 05/10/18         | 05/15/18<br>12:03     | 180510L17       |  |
| Parameter                               |                      | Result                 | RL          | 1            | DF               | Qua                   | lifiers         |  |
| Dibutyltin                              |                      | ND                     | 3.0         | )            | 1.00             |                       |                 |  |
| MonobutyItin                            |                      | ND                     | 3.0         | )            | 1.00             |                       |                 |  |
| Tetrabutyltin                           |                      | ND                     | 3.0         | )            | 1.00             |                       |                 |  |
| Tributyltin                             |                      | ND                     | 3.0         | )            | 1.00             |                       |                 |  |
| <u>Surrogate</u>                        |                      | <u>Rec. (%)</u>        | <u>Cc</u>   | ntrol Limits | Qualifiers       |                       |                 |  |
| Tripentyltin                            |                      | 64                     | 27          | -135         |                  |                       |                 |  |


### **PARTICLE SIZE SUMMARY**

(ASTM D422 / D4464M)

| CLE Engine | ering, Inc. | Date Sampled:  | 05/03/18    |
|------------|-------------|----------------|-------------|
| -          | -           | Date Received: | 05/04/18    |
|            |             | Work Order No: | 18-05-0353  |
|            |             | Date Analyzed: | 05/04/18    |
|            |             | Method:        | ASTM D4464M |
| Project:   | WETA        |                | Page 1 of 1 |

| Sample ID      | Depth<br>ft | Description | Mean<br>Grain Size<br>mm |
|----------------|-------------|-------------|--------------------------|
| DU-1 Composite |             | Silt        | 0.020                    |

|        | Particle Size Distribution, wt by percent |        |        |      |      |       |       |        |  |
|--------|-------------------------------------------|--------|--------|------|------|-------|-------|--------|--|
|        | Very                                      |        |        |      | Very |       |       | Total  |  |
| Total  | Coarse                                    | Coarse | Medium | Fine | Fine |       |       | Silt & |  |
| Gravel | Sand                                      | Sand   | Sand   | Sand | Sand | Silt  | Clay  | Clay   |  |
| 0.00   | 0.00                                      | 0.00   | 0.00   | 1.80 | 6.95 | 62.43 | 28.82 | 91.25  |  |



V 3.0



| FOTH CLE Engineering      |                               |                       |                    | Da               | te Received                   | :                   |          |                |            | 05/04/18   |
|---------------------------|-------------------------------|-----------------------|--------------------|------------------|-------------------------------|---------------------|----------|----------------|------------|------------|
| 15 Creek Road             |                               |                       |                    | Wo               | ork Order:                    |                     |          |                | 18         | 8-05-0353  |
| Marion, MA 02738-9999     |                               |                       |                    | Preparation:     |                               |                     |          |                |            | N/A        |
|                           |                               |                       |                    | Me               | thod:                         |                     |          |                | EF         | PA 9060A   |
| Project: WETA             |                               |                       |                    |                  |                               |                     |          |                | Page 1     | of 9       |
| Quality Control Sample ID | Туре                          |                       | Matrix             |                  | Instrument                    | Date Prepared       | Date Ana | lyzed          | MS/MSD Bat | ch Number  |
| DU-1 Composite            | Sample                        |                       | Sedime             | nt               | TOC 10                        | 05/22/18            | 05/22/18 | 18:05          | 10522TOCS1 |            |
| DU-1 Composite            | Matrix Spike                  |                       | Sedime             | nt               | TOC 10                        | 05/22/18            | 05/22/18 | 18: <b>0</b> 5 | 10522TOCS1 |            |
| DU-1 Composite            | Matrix Spike                  | Duplicate             | Sedime             | nt               | TOC 10                        | 05/22/18            | 05/22/18 | 18: <b>0</b> 5 | 10522TOCS1 |            |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Re | <u>c. MSD</u><br><u>Conc.</u> | <u>MSD</u><br>%Rec. | %Rec. CL | <u>RPD</u>     | RPD CL     | Qualifiers |
| Carbon, Total Organic     | 1.113                         | 3.000                 | 4.618              | 117              | 4.150                         | 101                 | 75-125   | 11             | 0-25       |            |



| FOTH CLE Engineering  | Date Received: | 05/04/18    |
|-----------------------|----------------|-------------|
| 15 Creek Road         | Work Order:    | 18-05-0353  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3050B   |
|                       | Method:        | EPA 6020    |
| Project: WETA         |                | Page 2 of 9 |

| Quality Control Sample ID | Туре                          |                       | Matrix             | Ins                | strument            | Date Prepared       | Date Ana        | lyzed      | MS/MSD Ba     | tch Number        |
|---------------------------|-------------------------------|-----------------------|--------------------|--------------------|---------------------|---------------------|-----------------|------------|---------------|-------------------|
| DU-1 Composite            | Sample                        |                       | Sedime             | ent ICI            | P/MS 03             | 05/07/18            | 05/09/18        | 18:57      | 180507S01     |                   |
| DU-1 Composite            | Matrix Spike                  |                       | Sedime             | ent ICI            | P/MS 03             | 05/07/18            | 05/09/18        | 18:47      | 180507S01     |                   |
| DU-1 Composite            | Matrix Spike                  | Duplicate             | Sedime             | ent ICI            | P/MS 03             | 05/07/18            | 05/09/18        | 18:49      | 180507S01     |                   |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Rec. | <u>MSD</u><br>Conc. | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u> | <u>RPD</u> | <u>RPD CL</u> | <u>Qualifiers</u> |
| Arsenic                   | 6.073                         | 25.00                 | 32.97              | 108                | 33.92               | 111                 | 80-120          | 3          | 0-20          |                   |
| Cadmium                   | 0.3938                        | 25.00                 | 28.16              | 111                | 29.05               | 115                 | 80-120          | 3          | 0-20          |                   |
| Chromium                  | 44.48                         | 25.00                 | 76.58              | 128                | 77.76               | 133                 | 80-120          | 2          | 0-20          | 3                 |
| Copper                    | 29.94                         | 25.00                 | 59.20              | 117                | 59.67               | 119                 | 80-120          | 1          | 0-20          |                   |
| Lead                      | 11.96                         | 25.00                 | 41.35              | 118                | 41.62               | 119                 | 80-120          | 1          | 0-20          |                   |
| Nickel                    | 46.91                         | 25.00                 | 79.60              | 131                | 79.15               | 129                 | 80-120          | 1          | 0-20          | 3                 |
| Silver                    | 0.1576                        | 12.50                 | 13.33              | 105                | 13.80               | 109                 | 80-120          | 3          | 0-20          |                   |
| Zinc                      | 63.64                         | 25.00                 | 97.86              | 137                | 100.5               | 147                 | 80-120          | 3          | 0-20          | 3                 |



| FOTH CLE Engineering      |                               |                       |                    | Da               | te Received:                  |                     |          |            |                 | 05/04/18   |  |
|---------------------------|-------------------------------|-----------------------|--------------------|------------------|-------------------------------|---------------------|----------|------------|-----------------|------------|--|
| 15 Creek Road             |                               |                       |                    |                  | ork Order:                    |                     |          |            | 18-05-0353      |            |  |
| Marion, MA 02738-9999     |                               |                       |                    |                  | Preparation:                  |                     |          |            | EPA 7471A Total |            |  |
|                           |                               |                       |                    | Method:          |                               |                     |          |            | E               | PA 7471A   |  |
| Project: WETA             |                               |                       |                    |                  |                               |                     |          |            | Page 3          | of 9       |  |
| Quality Control Sample ID | Туре                          |                       | Matrix             |                  | Instrument                    | Date Prepared       | Date Ana | lyzed      | MS/MSD Bat      | tch Number |  |
| DU-1 Composite            | Sample                        |                       | Sedime             | nt               | Mercury 08                    | 05/09/18            | 05/09/18 | 14:13      | 180509S01       |            |  |
| DU-1 Composite            | Matrix Spike                  |                       | Sedime             | nt               | Mercury 08                    | 05/09/18            | 05/09/18 | 14:15      | 180509S01       |            |  |
| DU-1 Composite            | Matrix Spike                  | Duplicate             | Sedime             | nt               | Mercury 08                    | 05/09/18            | 05/09/18 | 14:18      | 180509S01       |            |  |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Re | <u>MSD</u><br>c. <u>Conc.</u> | <u>MSD</u><br>%Rec. | %Rec. CL | <u>RPD</u> | <u>RPD CL</u>   | Qualifiers |  |
| Mercury                   | 0.1288                        | 0.8350                | 0.9091             | 93               | 0.7865                        | 79                  | 76-136   | 14         | 0-16            |            |  |

Return to Contents



| FOTH CLE Engineering  | Date Received: | 05/04/18    |
|-----------------------|----------------|-------------|
| 15 Creek Road         | Work Order:    | 18-05-0353  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3541    |
|                       | Method:        | EPA 8081A   |
| Project: WETA         |                | Page 4 of 9 |

| Quality Control Sample ID | Туре                   |                       | Matrix             |                  | Instrument                    | Date Prepared       | Date Ana        | lyzed      | MS/MSD Ba     | tch Number |
|---------------------------|------------------------|-----------------------|--------------------|------------------|-------------------------------|---------------------|-----------------|------------|---------------|------------|
| DU-1 Composite            | Sample                 | Sample                |                    | nt               | GC 44                         | 05/11/18            | 05/17/18 09:5   |            | 180511S25     |            |
| DU-1 Composite            | Matrix Spike           |                       | Sediment           |                  | GC 44                         | 05/11/18            | 05/17/18        | 09:26      | 180511S25     |            |
| DU-1 Composite            | Matrix Spike           | Duplicate             | Sedime             | nt               | GC 44                         | 05/11/18            | 05/17/18        | 09:41      | 180511S25     |            |
| Parameter                 | <u>Sample</u><br>Conc. | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Re | <u>c. MSD</u><br><u>Conc.</u> | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u> | <u>RPD</u> | <u>RPD CL</u> | Qualifiers |
| Aldrin                    | ND                     | 5.000                 | 3.725              | 74               | 3.426                         | 69                  | 50-135          | 8          | 0-25          |            |
| Alpha-BHC                 | ND                     | 5.000                 | 4.426              | 89               | 4.043                         | 81                  | 50-135          | 9          | 0-25          |            |
| Beta-BHC                  | ND                     | 5.000                 | 4.030              | 81               | 3.829                         | 77                  | 50-135          | 5          | 0-25          |            |
| Delta-BHC                 | ND                     | 5.000                 | 4.140              | 83               | 3.938                         | 79                  | 50-135          | 5          | 0-25          |            |
| Gamma-BHC                 | ND                     | 5.000                 | 4.270              | 85               | 3.879                         | 78                  | 50-135          | 10         | 0-25          |            |
| Dieldrin                  | ND                     | 5.000                 | 4.838              | 97               | 4.477                         | 90                  | 50-135          | 8          | 0-25          |            |
| 4,4'-DDD                  | 1.025                  | 5.000                 | 5.759              | 95               | 5.941                         | 98                  | 50-135          | 3          | 0-25          |            |
| 4,4'-DDE                  | 1.497                  | 5.000                 | 6.288              | 96               | 5.829                         | 87                  | 50-135          | 8          | 0-25          |            |
| 4,4'-DDT                  | ND                     | 5.000                 | 4.890              | 98               | 3.216                         | 64                  | 50-135          | 41         | 0-25          | 4          |
| Endosulfan I              | ND                     | 5.000                 | 4.753              | 95               | 4.333                         | 87                  | 50-135          | 9          | 0-25          |            |
| Endosulfan II             | ND                     | 5.000                 | 4.600              | 92               | 4.283                         | 86                  | 50-135          | 7          | 0-25          |            |
| Endosulfan Sulfate        | ND                     | 5.000                 | 5.455              | 109              | 5.455                         | 109                 | 50-135          | 0          | 0-25          |            |
| Endrin                    | ND                     | 5.000                 | 3.865              | 77               | 3.905                         | 78                  | 50-135          | 1          | 0-25          |            |
| Endrin Aldehyde           | ND                     | 5.000                 | 4.020              | 80               | 2.774                         | 55                  | 50-135          | 37         | 0-25          | 4          |



| FOTH CLE Engineering      |                               |                       |                    | Da               | te Rece      | ived              | :                          |            |            |               | 05/04/18   |  |
|---------------------------|-------------------------------|-----------------------|--------------------|------------------|--------------|-------------------|----------------------------|------------|------------|---------------|------------|--|
| 15 Creek Road             |                               | Work Order:           |                    |                  |              |                   |                            | 18-05-0353 |            |               |            |  |
| Marion, MA 02738-9999     |                               |                       |                    |                  |              |                   | Preparation:               |            |            |               |            |  |
|                           |                               |                       |                    | Method: E        |              |                   |                            |            |            | E             | PA 8081A   |  |
| Project: WETA             |                               |                       |                    |                  |              |                   |                            |            |            | Page 5        | of 9       |  |
| Quality Control Sample ID | Туре                          |                       | Matrix             |                  | Instrumer    | nt                | Date Prepared              | Date Ana   | lyzed      | MS/MSD Bat    | tch Number |  |
| DU-1 Composite            | Sample                        |                       | Sediment           |                  | GC 44        |                   | 05/15/18                   | 05/17/18   | 14:40      | 180515S03     |            |  |
| DU-1 Composite            | Matrix Spike                  |                       | Sedime             | nt               | GC 44        |                   | 05/15/18                   | 05/17/18   | 14:12      | 180515S03     |            |  |
| DU-1 Composite            | Matrix Spike                  | Duplicate             | Sedime             | nt               | GC 44        |                   | 05/15/18                   | 05/17/18   | 14:26      | 180515S03     |            |  |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Re | ec. <u>M</u> | <u>SD</u><br>inc. | <u>MSD</u><br><u>%Rec.</u> | %Rec. CL   | <u>RPD</u> | <u>RPD CL</u> | Qualifiers |  |
| Chlordane                 | ND                            | 50.00                 | 59.24              | 118              | 58           | .25               | 117                        | 50-115     | 2          | 0-20          | 3          |  |



| FOTH CLE Engineering      |                               |                       |                    | Da                          | te Received:           |                            |                 |            |               | 05/04/18          |  |  |
|---------------------------|-------------------------------|-----------------------|--------------------|-----------------------------|------------------------|----------------------------|-----------------|------------|---------------|-------------------|--|--|
| 15 Creek Road             |                               |                       |                    | Wo                          | ork Order:             |                            |                 | 18-05-0353 |               |                   |  |  |
| Marion, MA 02738-9999     |                               |                       |                    | Pre                         | eparation:             |                            |                 | EPA 3541   |               |                   |  |  |
|                           |                               |                       |                    | Method: EPA 82              |                        |                            |                 |            | PEST-SIM      |                   |  |  |
| Project: WETA             |                               |                       |                    |                             |                        |                            |                 |            | Page 6        | of 9              |  |  |
| Quality Control Sample ID | Туре                          |                       | Matrix             |                             | Instrument             | Date Prepared              | Date Ana        | lyzed      | MS/MSD Bat    | tch Number        |  |  |
| DU-1 Composite            | Sample                        |                       | Sedime             | Sediment GC/MS BBB 05/11/18 |                        | 05/11/18                   | 05/16/18        | 16:39      | 180511S24     |                   |  |  |
| DU-1 Composite            | Matrix Spike                  |                       | Sedime             | nt                          | GC/MS BBB              | 05/11/18                   | 05/16/18        | 16:09      | 180511S24     |                   |  |  |
| DU-1 Composite            | Matrix Spike                  | Duplicate             | Sedime             | nt                          | GC/MS BBB              | 05/11/18                   | 05/16/18        | 16:24      | 180511S24     |                   |  |  |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br><u>%Re</u>     | <u>MSD</u><br>c. Conc. | <u>MSD</u><br><u>%Rec.</u> | <u>%Rec. CL</u> | <u>RPD</u> | <u>RPD CL</u> | <u>Qualifiers</u> |  |  |
| Heptachlor                | ND                            | 5.000                 | 4.379              | 88                          | 3.489                  | 70                         | 25-200          | 23         | 0-25          |                   |  |  |
| Heptachlor Epoxide        | ND                            | 5.000                 | 5.542              | 111                         | 5.375                  | 107                        | 25-200          | 3          | 0-25          |                   |  |  |

Return to Contents



| FOTH CLE Engineering  | Date Received: | 05/04/18           |
|-----------------------|----------------|--------------------|
| 5 5                   | Work Order:    | 18-05-0353         |
| 15 Creek Road         |                |                    |
| Marion, MA 02738-9999 | Preparation:   | EPA 3541           |
|                       | Method:        | EPA 8270C SIM PAHs |
| Project: WETA         |                | Page 7 of 9        |

| Quality Control Sample ID | Туре                          |                       | Matrix             |                  | Instrument                     | Date Prepar  | red Date Ana     | lyzed      | MS/MSD Ba     | tch Number        |
|---------------------------|-------------------------------|-----------------------|--------------------|------------------|--------------------------------|--------------|------------------|------------|---------------|-------------------|
| DU-1 Composite            | Sample                        |                       | Sediment           |                  | GC/MS AAA                      | 05/09/18     | 18 05/12/18 00:5 |            | 180509S14     |                   |
| DU-1 Composite            | Matrix Spike                  |                       | Sedime             | nt               | GC/MS AAA                      | 05/09/18     | 05/11/18         | 17:27      | 180509S14     |                   |
| DU-1 Composite            | Matrix Spike                  | Duplicate             | Sedime             | nt               | GC/MS AAA                      | 05/09/18     | 05/11/18         | 17:47      | 180509S14     |                   |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Re | <u>MSD</u><br>ec. <u>Conc.</u> | MSD<br>%Rec. | %Rec. CL         | <u>RPD</u> | <u>RPD CL</u> | <u>Qualifiers</u> |
| Acenaphthene              | ND                            | 100.0                 | 90.09              | 90               | 85.62                          | 86           | 40-160           | 5          | 0-20          |                   |
| Acenaphthylene            | ND                            | 100.0                 | 89.77              | 90               | 84.58                          | 85           | 40-160           | 6          | 0-20          |                   |
| Anthracene                | ND                            | 100.0                 | 105.6              | 106              | 101.2                          | 101          | 40-160           | 4          | 0-20          |                   |
| Benzo (a) Anthracene      | 23.79                         | 100.0                 | 131.9              | 108              | 126.7                          | 103          | 40-160           | 4          | 0-20          |                   |
| Benzo (a) Pyrene          | 44.07                         | 100.0                 | 156.1              | 112              | 151.2                          | 107          | 40-160           | 3          | 0-20          |                   |
| Benzo (b) Fluoranthene    | 39.28                         | 100.0                 | 138.5              | 99               | 134.3                          | 95           | 40-160           | 3          | 0-20          |                   |
| Benzo (g,h,i) Perylene    | 36.92                         | 100.0                 | 153.8              | 117              | 147.4                          | 111          | 40-160           | 4          | 0-20          |                   |
| Benzo (k) Fluoranthene    | 26.92                         | 100.0                 | 121.5              | 95               | 116.8                          | 90           | 40-160           | 4          | 0-20          |                   |
| Chrysene                  | 26.63                         | 100.0                 | 131.6              | 105              | 122.0                          | 95           | 40-160           | 8          | 0-20          |                   |
| Dibenz (a,h) Anthracene   | ND                            | 100.0                 | 112.6              | 113              | 109.9                          | 110          | 40-160           | 2          | 0-20          |                   |
| Fluoranthene              | 48.18                         | 100.0                 | 156.4              | 108              | 151.3                          | 103          | 40-160           | 3          | 0-20          |                   |
| Fluorene                  | ND                            | 100.0                 | 96.66              | 97               | 92.07                          | 92           | 40-160           | 5          | 0-20          |                   |
| Indeno (1,2,3-c,d) Pyrene | 25.60                         | 100.0                 | 134.0              | 108              | 128.8                          | 103          | 40-160           | 4          | 0-20          |                   |
| 2-Methylnaphthalene       | ND                            | 100.0                 | 95.74              | 96               | 89.70                          | 90           | 40-160           | 7          | 0-20          |                   |
| 1-Methylnaphthalene       | ND                            | 100.0                 | 87.58              | 88               | 82.24                          | 82           | 40-160           | 6          | 0-20          |                   |
| Naphthalene               | ND                            | 100.0                 | 81.73              | 82               | 74.11                          | 74           | 40-160           | 10         | 0-20          |                   |
| Phenanthrene              | 14.43                         | 100.0                 | 114.9              | 100              | 106.6                          | 92           | 40-160           | 7          | 0-20          |                   |
| Pyrene                    | 56.16                         | 100.0                 | 174.0              | 118              | 160.1                          | 104          | 40-160           | 8          | 0-46          |                   |

Return to Contents



| FOTH CLE Engineering  | Date Received: | 05/04/18                    |
|-----------------------|----------------|-----------------------------|
| 15 Creek Road         | Work Order:    | 18-05-0353                  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3541                    |
|                       | Method:        | EPA 8270C SIM PCB Congeners |
| Project: WETA         |                | Page 8 of 9                 |

| Quality Control Sample ID | Туре                          |                       | Matrix      | Matrix In         |                        | Date Prepared       | Date Ana        | lyzed      | MS/MSD Ba     | tch Number |
|---------------------------|-------------------------------|-----------------------|-------------|-------------------|------------------------|---------------------|-----------------|------------|---------------|------------|
| DU-1 Composite            | Sample                        | ample                 |             | ent               | GC/MS HHH              | 05/11/18            | 05/16/18        | 19:58      | 180511S23     |            |
| DU-1 Composite            | Matrix Spike                  |                       | Sedime      | ent               | GC/MS HHH              | 05/11/18            | 05/16/18        | 19:11      | 180511S23     |            |
| DU-1 Composite            | Matrix Spike                  | Duplicate             | Sedime      | ent               | GC/MS HHH              | 05/11/18            | 05/16/18        | 19:34      | 180511S23     |            |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | MS<br>Conc. | <u>MS</u><br>%Red | c. <u>MSD</u><br>Conc. | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u> | <u>RPD</u> | <u>RPD CL</u> | Qualifiers |
| PCB018                    | ND                            | 50.00                 | 48.82       | 98                | 45.69                  | 91                  | 50-150          | 7          | 0-25          |            |
| PCB028                    | ND                            | 50.00                 | 55.04       | 110               | 51.32                  | 103                 | 50-150          | 7          | 0-25          |            |
| PCB044                    | ND                            | 50.00                 | 52.30       | 105               | 48.74                  | 97                  | 50-150          | 7          | 0-25          |            |
| PCB052                    | ND                            | 50.00                 | 54.08       | 108               | 50.21                  | 100                 | 50-150          | 7          | 0-25          |            |
| PCB066                    | ND                            | 50.00                 | 61.06       | 122               | 56.43                  | 113                 | 50-150          | 8          | 0-25          |            |
| PCB101                    | 0.4328                        | 50.00                 | 49.99       | 99                | 45.22                  | 90                  | 50-150          | 10         | 0-25          |            |
| PCB105                    | ND                            | 50.00                 | 56.59       | 113               | 51.38                  | 103                 | 50-150          | 10         | 0-25          |            |
| PCB118                    | 0.4224                        | 50.00                 | 56.67       | 113               | 52.15                  | 103                 | 50-150          | 8          | 0-25          |            |
| PCB128                    | ND                            | 50.00                 | 51.49       | 103               | 47.04                  | 94                  | 50-150          | 9          | 0-25          |            |
| PCB170                    | 0.2286                        | 50.00                 | 49.23       | 98                | 43.17                  | 86                  | 50-150          | 13         | 0-25          |            |
| PCB180                    | ND                            | 50.00                 | 56.00       | 112               | 50.39                  | 101                 | 50-150          | 11         | 0-25          |            |
| PCB187                    | 0.3031                        | 50.00                 | 51.99       | 103               | 46.16                  | 92                  | 50-150          | 12         | 0-25          |            |
| PCB195                    | ND                            | 50.00                 | 45.41       | 91                | 39.42                  | 79                  | 50-150          | 14         | 0-25          |            |

# 🔅 eurofins

Calscience

### **Quality Control - Spike/Spike Duplicate**

| FOTH CLE Engineering      |                               |                       |                    | Dat              | te Received:                  |                     |                           |            |               | 05/04/18   |  |
|---------------------------|-------------------------------|-----------------------|--------------------|------------------|-------------------------------|---------------------|---------------------------|------------|---------------|------------|--|
| 15 Creek Road             |                               |                       |                    | Wo               | ork Order:                    |                     |                           |            | 18            | 3-05-0353  |  |
| Marion, MA 02738-9999     |                               |                       |                    | Pre              | eparation:                    |                     | EPA 3550B (M)             |            |               |            |  |
|                           |                               |                       |                    |                  |                               |                     | Organotins by Krone et al |            |               |            |  |
| Project: WETA             |                               |                       |                    |                  |                               |                     |                           |            | Page 9        | of 9       |  |
| Quality Control Sample ID | Туре                          |                       | Matrix             |                  | Instrument                    | Date Prepared       | Date Ana                  | lyzed      | MS/MSD Bat    | ch Number  |  |
| DU-1 Composite            | Sample                        |                       | Sedimer            | nt               | GC/MS Y                       | 05/10/18            | 05/15/18                  | 16:07      | 180510S17     |            |  |
| DU-1 Composite            | Matrix Spike                  |                       | Sedimer            | nt               | GC/MS Y                       | 05/10/18            | 05/15/18                  | 15:33      | 180510S17     |            |  |
| DU-1 Composite            | Matrix Spike                  | Duplicate             | Sedimer            | nt               | GC/MS Y                       | 05/10/18            | 05/15/18                  | 15:50      | 180510S17     |            |  |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Re | <u>MSD</u><br>c. <u>Conc.</u> | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u>           | <u>RPD</u> | <u>RPD CL</u> | Qualifiers |  |
| Tetrabutyltin             | ND                            | 100.0                 | 87.05              | 87               | 91.34                         | 91                  | 33-129                    | 5          | 0-36          |            |  |
| Tributyltin               | ND                            | 100.0                 | 65.23              | 65               | 66.20                         | 66                  | 34-142                    | 1          | 0-50          |            |  |

Return to Contents



## **Quality Control - PDS**

| FOTH CLE Engineering  | Date Received: | 05/04/18    |
|-----------------------|----------------|-------------|
| 15 Creek Road         | Work Order:    | 18-05-0353  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3050B   |
|                       | Method:        | EPA 6020    |
| Project: WETA         |                | Page 1 of 1 |

| Quality Control Sample ID | Туре   |              | Matrix      | Instrument | Date Prepared Da  | ate Analyzed   | PDS/PDSD Batch<br>Number |
|---------------------------|--------|--------------|-------------|------------|-------------------|----------------|--------------------------|
| DU-1 Composite            | Sample |              | Sediment    | ICP/MS 03  | 05/07/18 00:00 05 | /09/18 18:57   | 180507S01                |
| DU-1 Composite            | PDS    |              | Sediment    | ICP/MS 03  | 05/07/18 00:00 05 | /09/18 18:52   | 180507S01                |
| Parameter                 |        | Sample Conc. | Spike Addeo | d PDS Conc | . PDS %Rec.       | <u>%Rec. C</u> | L Qualifiers             |
| Arsenic                   |        | 6.073        | 25.00       | 31.67      | 102               | 75-125         |                          |
| Cadmium                   |        | 0.3938       | 25.00       | 27.09      | 107               | 75-125         |                          |
| Chromium                  |        | 44.48        | 25.00       | 70.16      | 103               | 75-125         |                          |
| Copper                    |        | 29.94        | 25.00       | 56.42      | 106               | 75-125         |                          |
| Lead                      |        | 11.96        | 25.00       | 38.33      | 105               | 75-125         |                          |
| Nickel                    |        | 46.91        | 25.00       | 73.93      | 108               | 75-125         |                          |
| Silver                    |        | 0.1576       | 12.50       | 13.12      | 104               | 75-125         |                          |
| Zinc                      |        | 63.64        | 25.00       | 92.29      | 115               | 75-125         |                          |



## **Quality Control - Sample Duplicate**

| FOTH CLE Engineering      |                  |              | Date Received | 1:             |                | 05/04/18               |
|---------------------------|------------------|--------------|---------------|----------------|----------------|------------------------|
| 15 Creek Road             |                  |              | Work Order:   |                |                | 18-05-0353             |
| Marion, MA 02738-9999     |                  |              | Preparation:  |                |                | N/A                    |
|                           |                  |              | Method:       |                |                | SM 2540 B (M)          |
| Project: WETA             |                  |              |               |                |                | Page 1 of 1            |
| Quality Control Sample ID | Туре             | Matrix       | Instrument    | Date Prepared  | Date Analyzed  | Duplicate Batch Number |
| 18-04-2252-1              | Sample           | Sediment     | N/A           | 05/09/18 00:00 | 05/09/18 15:30 | 10509TSD2              |
| 18-04-2252-1              | Sample Duplicate | Sediment     | N/A           | 05/09/18 00:00 | 05/09/18 15:30 | 10509TSD2              |
| Parameter                 |                  | Sample Conc. | DUP Conc.     | <u>RPD</u>     | RPD CL         | Qualifiers             |
| Solids, Total             |                  | 58.60        | 58.70         | 0              | 0-10           |                        |

RPD: Relative Percent Difference. CL: Control Limits





| FOTH CLE Engineering      |       |              |     | Date Receiv | ved:                  |        |                                  |             | 05/04/18    |
|---------------------------|-------|--------------|-----|-------------|-----------------------|--------|----------------------------------|-------------|-------------|
| 15 Creek Road             |       |              |     | Work Order  |                       |        |                                  | 1           | 8-05-0353   |
| Marion, MA 02738-9999     |       |              |     | Preparation |                       |        |                                  |             | N/A         |
|                           |       |              |     | Method:     |                       |        |                                  | E           | PA 9060A    |
| Project: WETA             |       |              |     |             |                       |        |                                  | Page        | 1 of 9      |
| Quality Control Sample ID | Turne | Mat          |     |             |                       |        |                                  |             |             |
| adding Control Campic ID  | Туре  | Mat          | rix | Instrument  | Date Prep             | ared [ | Date Analyzed                    | LCS/LCSD Ba | atch Number |
| 099-06-013-1831           | LCS   | Soli         |     | TOC 10      | Date Prep<br>05/22/18 |        | Date Analyzed                    |             | atch Number |
|                           |       |              | id  |             |                       | C      | ,                                | 10522TOCL1  | atch Number |
| 099-06-013-1831           | LCS   | Soli<br>Soli | id  | TOC 10      | 05/22/18<br>05/22/18  | C      | )5/22/18 18:05<br>)5/22/18 18:05 | 10522TOCL1  | atch Number |

RPD: Relative Percent Difference. CL: Control Limits



## **Quality Control - LCS**

| FOTH CLE Engineering  | Date Received: | 05/04/18    |
|-----------------------|----------------|-------------|
| 15 Creek Road         | Work Order:    | 18-05-0353  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3050B   |
|                       | Method:        | EPA 6020    |
| Project: WETA         |                | Page 2 of 9 |

| Quality Control Sample ID | Туре | Matrix      | Instrument   | Date Prepared | Date Analyzed  | LCS Batch Number |
|---------------------------|------|-------------|--------------|---------------|----------------|------------------|
| 099-15-254-604            | LCS  | Solid       | ICP/MS 03    | 05/07/18      | 05/09/18 18:44 | 180507L01E       |
| <u>Parameter</u>          |      | Spike Added | Conc. Recove | ered LCS %Re  | <u>%Rec.</u>   | CL Qualifiers    |
| Arsenic                   |      | 25.00       | 26.67        | 107           | 80-120         |                  |
| Cadmium                   |      | 25.00       | 27.09        | 108           | 80-120         |                  |
| Chromium                  |      | 25.00       | 27.22        | 109           | 80-120         |                  |
| Copper                    |      | 25.00       | 26.96        | 108           | 80-120         |                  |
| Lead                      |      | 25.00       | 27.25        | 109           | 80-120         |                  |
| Nickel                    |      | 25.00       | 26.54        | 106           | 80-120         |                  |
| Silver                    |      | 12.50       | 13.06        | 105           | 80-120         |                  |
| Zinc                      |      | 25.00       | 29.04        | 116           | 80-120         |                  |

RPD: Relative Percent Difference. CL: Control Limits





| FOTH CLE Engineering      |      |             | Date Receiv  | red:          |                | 05/04/18         |
|---------------------------|------|-------------|--------------|---------------|----------------|------------------|
| 15 Creek Road             |      |             | Work Order:  | :             |                | 18-05-0353       |
| Marion, MA 02738-9999     |      |             | Preparation: | :             |                | EPA 7471A Total  |
|                           |      |             | Method:      |               |                | EPA 7471A        |
| Project: WETA             |      |             |              |               |                | Page 3 of 9      |
| Quality Control Sample ID | Туре | Matrix      | Instrument   | Date Prepared | Date Analyzed  | LCS Batch Number |
| 099-16-278-413            | LCS  | Solid       | Mercury 08   | 05/09/18      | 05/09/18 14:11 | 180509L01E       |
| Parameter                 |      | Spike Added | Conc. Recov  | ered LCS %R   | ec. %Rec       | . CL Qualifiers  |

0.7931

95

82-124

0.8350

RPD: Relative Percent Difference. CL: Control Limits



## **Quality Control - LCS**

| FOTH CLE Engineering  | Date Received: | 05/04/18    |
|-----------------------|----------------|-------------|
| 15 Creek Road         | Work Order:    | 18-05-0353  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3541    |
|                       | Method:        | EPA 8081A   |
| Project: WETA         |                | Page 4 of 9 |

| Quality Control Sample ID | Туре | Matrix      | Instrumen       | t Date Prep | ared Date Anal  | yzed LCS Batch N | Number            |
|---------------------------|------|-------------|-----------------|-------------|-----------------|------------------|-------------------|
| 099-12-858-542            | LCS  | Solid       | GC 44           | 05/11/18    | 05/17/18        | 06:41 180511L25  |                   |
| Parameter                 |      | Spike Added | Conc. Recovered | LCS %Rec.   | <u>%Rec. CL</u> | ME CL            | <u>Qualifiers</u> |
| Aldrin                    |      | 5.000       | 4.272           | 85          | 50-135          | 36-149           |                   |
| Alpha-BHC                 |      | 5.000       | 4.335           | 87          | 50-135          | 36-149           |                   |
| Beta-BHC                  |      | 5.000       | 4.773           | 95          | 50-135          | 36-149           |                   |
| Delta-BHC                 |      | 5.000       | 4.938           | 99          | 50-135          | 36-149           |                   |
| Gamma-BHC                 |      | 5.000       | 4.542           | 91          | 50-135          | 36-149           |                   |
| Dieldrin                  |      | 5.000       | 4.891           | 98          | 50-135          | 36-149           |                   |
| 4,4'-DDD                  |      | 5.000       | 5.255           | 105         | 50-135          | 36-149           |                   |
| 4,4'-DDE                  |      | 5.000       | 5.193           | 104         | 50-135          | 36-149           |                   |
| 4,4'-DDT                  |      | 5.000       | 5.170           | 103         | 50-135          | 36-149           |                   |
| Endosulfan I              |      | 5.000       | 4.855           | 97          | 50-135          | 36-149           |                   |
| Endosulfan II             |      | 5.000       | 5.496           | 110         | 50-135          | 36-149           |                   |
| Endosulfan Sulfate        |      | 5.000       | 5.040           | 101         | 50-135          | 36-149           |                   |
| Endrin                    |      | 5.000       | 4.806           | 96          | 50-135          | 36-149           |                   |
| Endrin Aldehyde           |      | 5.000       | 2.530           | 51          | 50-135          | 36-149           |                   |

Total number of LCS compounds: 14

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass





| FOTH CLE Engineering      |      |             | Date Receiv  | ed:           |                 | 05/04/18                      |
|---------------------------|------|-------------|--------------|---------------|-----------------|-------------------------------|
| 15 Creek Road             |      |             | Work Order:  |               |                 | 18-05-0353                    |
| Marion, MA 02738-9999     |      |             | Preparation: |               |                 | EPA 3545                      |
|                           |      |             | Method:      |               |                 | EPA 8081A                     |
| Project: WETA             |      |             |              |               |                 | Page 5 of 9                   |
| Quality Control Sample ID | Туре | Matrix      | Instrument   | Date Prepared | Date Analyzed   | LCS Batch Number              |
| 099-15-817-44             | LCS  | Solid       | GC 44        | 05/15/18      | 05/17/18 07:10  | 180515L03                     |
| Parameter                 |      | Spike Added | Conc. Recove | ered LCS %R   | ec. <u>%Rec</u> | <u>. CL</u> <u>Qualifiers</u> |

48.09

96

55-115

50.00

RPD: Relative Percent Difference. CL: Control Limits





| FOTH CLE Engineering      |      |        | Date Receiv | /ed:          |               | 05/04/18           |
|---------------------------|------|--------|-------------|---------------|---------------|--------------------|
| 15 Creek Road             |      |        | Work Order  | :             |               | 18-05-0353         |
| Marion, MA 02738-9999     |      |        | Preparation | :             |               | EPA 3541           |
|                           |      |        | Method:     |               | I             | EPA 8270C PEST-SIM |
| Project: WETA             |      |        |             |               |               | Page 6 of 9        |
| Quality Control Sample ID | Туре | Matrix | Instrument  | Date Prepared | Date Analyzed | LCS Batch Number   |

| Quality Control Campic ID | турс | IVIALITA    | instrument Da   | lic i icpaica | Date Analyzed LO   | O Dateri Number |
|---------------------------|------|-------------|-----------------|---------------|--------------------|-----------------|
| 099-16-154-93             | LCS  | Solid       | GC/MS BBB 05    | /11/18        | 05/16/18 15:54 18  | 0511L24         |
| Parameter                 |      | Spike Added | Conc. Recovered | LCS %Re       | <u>c. %Rec. CL</u> | Qualifiers      |
| Heptachlor                |      | 5.000       | 4.539           | 91            | 25-200             |                 |
| Heptachlor Epoxide        |      | 5.000       | 4.580           | 92            | 25-200             |                 |





| FOTH CLE Engineering  | Date Received: | 05/04/18           |
|-----------------------|----------------|--------------------|
| 15 Creek Road         | Work Order:    | 18-05-0353         |
| Marion, MA 02738-9999 | Preparation:   | EPA 3541           |
|                       | Method:        | EPA 8270C SIM PAHs |
| Project: WETA         |                | Page 7 of 9        |

| Quality Control Sample ID | Туре | Matrix      | Instrumen       | t   | Date Prepare | d Date Analyzed | LCS Batch N  | umber             |
|---------------------------|------|-------------|-----------------|-----|--------------|-----------------|--------------|-------------------|
| 099-14-097-268            | LCS  | Solid       | GC/MS A         | AA  | 05/09/18     | 05/11/18 15:10  | 0 180509L14  |                   |
| Parameter                 | 5    | Spike Added | Conc. Recovered | LCS | %Rec. %      | Rec. CL N       | <u>IE CL</u> | <u>Qualifiers</u> |
| Acenaphthene              |      | 100.0       | 82.14           | 82  | 4            | 0-160 2         | 0-180        |                   |
| Acenaphthylene            |      | 100.0       | 80.18           | 80  | 4            | 0-160 2         | 0-180        |                   |
| Anthracene                |      | 100.0       | 86.00           | 86  | 4            | 0-160 2         | 0-180        |                   |
| Benzo (a) Anthracene      |      | 100.0       | 95.89           | 96  | 4            | 0-160 2         | 0-180        |                   |
| Benzo (a) Pyrene          |      | 100.0       | 99.62           | 100 | 4            | 0-160 2         | 0-180        |                   |
| Benzo (b) Fluoranthene    |      | 100.0       | 96.55           | 97  | 4            | 0-160 2         | 0-180        |                   |
| Benzo (g,h,i) Perylene    |      | 100.0       | 100.4           | 100 | 4            | 0-160 2         | 0-180        |                   |
| Benzo (k) Fluoranthene    |      | 100.0       | 97.57           | 98  | 4            | 0-160 2         | 0-180        |                   |
| Chrysene                  |      | 100.0       | 94.69           | 95  | 4            | 0-160 2         | 0-180        |                   |
| Dibenz (a,h) Anthracene   |      | 100.0       | 97.51           | 98  | 4            | 0-160 2         | 0-180        |                   |
| Fluoranthene              |      | 100.0       | 92.18           | 92  | 4            | 0-160 2         | 0-180        |                   |
| Fluorene                  |      | 100.0       | 83.29           | 83  | 4            | 0-160 2         | 0-180        |                   |
| Indeno (1,2,3-c,d) Pyrene |      | 100.0       | 96.54           | 97  | 4            | 0-160 2         | 0-180        |                   |
| 2-Methylnaphthalene       |      | 100.0       | 83.65           | 84  | 4            | 0-160 2         | 0-180        |                   |
| 1-Methylnaphthalene       |      | 100.0       | 78.92           | 79  | 4            | 0-160 2         | 0-180        |                   |
| Naphthalene               |      | 100.0       | 71.90           | 72  | 4            | 0-160 2         | 0-180        |                   |
| Phenanthrene              |      | 100.0       | 84.05           | 84  | 4            | 0-160 2         | 0-180        |                   |
| Pyrene                    |      | 100.0       | 97.99           | 98  | 4            | 0-160 2         | 0-180        |                   |

Total number of LCS compounds: 18 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

RPD: Relative Percent Difference. **CL: Control Limits** 





Calscience

| FOTH CLE Engineering  | Date Received: | 05/04/18                    |
|-----------------------|----------------|-----------------------------|
| 15 Creek Road         | Work Order:    | 18-05-0353                  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3541                    |
|                       | Method:        | EPA 8270C SIM PCB Congeners |
| Project: WETA         |                | Page 8 of 9                 |

| Quality Control Sample ID | Туре | Matrix      |         | Instrument  | Date Prepa      | red Date Analyze | ed LCS Batch N | umber             |
|---------------------------|------|-------------|---------|-------------|-----------------|------------------|----------------|-------------------|
| 099-16-418-306            | LCS  | Solid       |         | GC/MS HHH   | 05/11/18        | 05/16/18 18:     | 48 180511L23   |                   |
| Parameter                 |      | Spike Added | Conc. F | Recovered L | <u>CS %Rec.</u> | <u>%Rec. CL</u>  | ME CL          | <u>Qualifiers</u> |
| PCB018                    |      | 50.00       | 42.58   | 8           | 5               | 24-132           | 6-150          |                   |
| PCB028                    |      | 50.00       | 46.00   | 9           | 2               | 31-133           | 14-150         |                   |
| PCB044                    |      | 50.00       | 48.31   | 9           | 7               | 36-120           | 22-134         |                   |
| PCB052                    |      | 50.00       | 45.60   | 9           | 1               | 31-121           | 16-136         |                   |
| PCB066                    |      | 50.00       | 56.47   | 1           | 13              | 43-139           | 27-155         |                   |
| PCB101                    |      | 50.00       | 45.35   | 9           | 1               | 37-121           | 23-135         |                   |
| PCB105                    |      | 50.00       | 49.35   | 9           | 9               | 48-132           | 34-146         |                   |
| PCB118                    |      | 50.00       | 51.71   | 1           | 03              | 46-136           | 31-151         |                   |
| PCB128                    |      | 50.00       | 44.76   | 9           | 0               | 40-130           | 25-145         |                   |
| PCB170                    |      | 50.00       | 45.73   | 9           | 1               | 40-124           | 26-138         |                   |
| PCB180                    |      | 50.00       | 49.22   | 9           | 8               | 41-143           | 24-160         |                   |
| PCB187                    |      | 50.00       | 45.85   | 9           | 2               | 39-129           | 24-144         |                   |
| PCB195                    |      | 50.00       | 45.39   | 9           | 1               | 44-128           | 30-142         |                   |

Total number of LCS compounds: 13

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits





| 18-05-0353                 |
|----------------------------|
|                            |
| EPA 3550B (M)              |
| Organotins by Krone et al. |
| Page 9 of 9                |
| -                          |

| Quality Control Sample ID | Туре | Matrix      | Instrument   | Date Prepared | Date Analyzed   | LCS Batch Number |
|---------------------------|------|-------------|--------------|---------------|-----------------|------------------|
| 099-07-016-1589           | LCS  | Solid       | GC/MS Y      | 05/10/18      | 05/15/18 16:48  | 180510L17        |
| Parameter                 |      | Spike Added | Conc. Recove | ered LCS %R   | <u>ec. %Rec</u> | . CL Qualifiers  |
| Tetrabutyltin             |      | 100.0       | 43.33        | 43            | 40-142          | 2                |
| Tributyltin               |      | 100.0       | 37.25        | 37            | 33-147          | 7                |

RPD: Relative Percent Difference. CL: Control Limits



### Calscience

### Work Order: 18-05-0353

**Glossary of Terms and Qualifiers** 

| Work Order:       | : 18-05-0353                                                                                                                                                                                                                                                                                                                                     | Page 1 of 1                                 |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| <u>Qualifiers</u> | Definition                                                                                                                                                                                                                                                                                                                                       |                                             |
| *                 | See applicable analysis comment.                                                                                                                                                                                                                                                                                                                 |                                             |
| <                 | Less than the indicated value.                                                                                                                                                                                                                                                                                                                   |                                             |
| >                 | Greater than the indicated value.                                                                                                                                                                                                                                                                                                                |                                             |
| 1                 | Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data w clarification.                                                                                                                                                                                                                    | as reported without further                 |
| 2                 | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrog<br>in control and, therefore, the sample data was reported without further clarification.                                                                                                                                          | ate spike compound was                      |
| 3                 | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspecte<br>associated LCS recovery was in control.                                                                                                                                                                                         | d matrix interference. The                  |
| 4                 | The MS/MSD RPD was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                                          |                                             |
| 5                 | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix in                                                                                                                                                                                                                                     | iterference.                                |
| 6                 | Surrogate recovery below the acceptance limit.                                                                                                                                                                                                                                                                                                   |                                             |
| 7                 | Surrogate recovery above the acceptance limit.                                                                                                                                                                                                                                                                                                   |                                             |
| В                 | Analyte was present in the associated method blank.                                                                                                                                                                                                                                                                                              |                                             |
| BU                | Sample analyzed after holding time expired.                                                                                                                                                                                                                                                                                                      |                                             |
| BV                | Sample received after holding time expired.                                                                                                                                                                                                                                                                                                      |                                             |
| CI                | See case narrative.                                                                                                                                                                                                                                                                                                                              |                                             |
| Е                 | Concentration exceeds the calibration range.                                                                                                                                                                                                                                                                                                     | 9                                           |
| ET                | Sample was extracted past end of recommended max. holding time.                                                                                                                                                                                                                                                                                  |                                             |
| HD                | The chromatographic pattern was inconsistent with the profile of the reference fuel standard.                                                                                                                                                                                                                                                    |                                             |
| HDH               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but h were also present (or detected).                                                                                                                                                                                                  | neavier hydrocarbons                        |
| HDL               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but I<br>also present (or detected).                                                                                                                                                                                                    | ighter hydrocarbons were                    |
| J                 | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. estimated.                                                                                                                                                                                                                    | Reported value is                           |
| JA                | Analyte positively identified but quantitation is an estimate.                                                                                                                                                                                                                                                                                   |                                             |
| ME                | LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).                                                                                                                                                                                                                                         |                                             |
| ND                | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                                                                                                                         |                                             |
| Q                 | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exce concentration by a factor of four or greater.                                                                                                                                                                                   | eding the spike                             |
| SG                | The sample extract was subjected to Silica Gel treatment prior to analysis.                                                                                                                                                                                                                                                                      |                                             |
| Х                 | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                                                                                                              |                                             |
| Z                 | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                                                                                                           |                                             |
|                   | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture reported on a wet weight basis.                                                                                                                                                                                            | re. All QC results are                      |
|                   | Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding t<br>(40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being re<br>stated holding time unless received at the laboratory within 15 minutes of the collection time. | ime of <= 15 minutes eceived outside of the |
|                   |                                                                                                                                                                                                                                                                                                                                                  |                                             |

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

|         |            |          |          | · • • |
|---------|------------|----------|----------|-------|
| ÷       |            | S. 1     |          | ٠.    |
|         |            |          | ····     |       |
| ۰.      |            |          |          |       |
|         | 36.64      | ****     | <b></b>  | ير م  |
| ·       | 1.14       | · · · .  |          | - 1   |
|         | 1.1        | - 2      | ÷. *•    | ÷.,   |
|         | ×.1        | 1.34     | - N - S  |       |
| 1       | ÷ 21       | . ° -    |          |       |
| ÷       | - <b>r</b> | .57      | 2.       |       |
|         | ્યા        | 6        | Ě۰.      |       |
| · · ·   | 1.5        | J        | ÷        |       |
| · *• .  | . A        |          |          |       |
| 14.1    | - 6        |          | ÷        | ·· .  |
| ·       | . 4        |          |          |       |
| 5. A    |            |          | · 184    |       |
|         |            |          |          | ••••  |
| 1.14    | 111        |          | · · ·    | ۰.    |
|         | ΕX         | 201      | ₩.:      | ÷. 1  |
|         | 20         | ••••     |          | • •   |
| - B     |            |          | • •      | ۰     |
|         | ème e      | 100      | 5E '     |       |
|         | _          |          |          | 4.1   |
| · . · . | 37         | _        |          | . °.  |
| - 51    | . 4        |          |          | 1.1   |
| 1.1.1   | : a'       | 7. J     | - N      | ۰.    |
| - 1     | . 1        | · · · ·  | đ        | ÷ 2   |
|         |            | - 11     |          |       |
| 1.14    | · #        |          |          |       |
|         | - 2        |          |          |       |
| · · · · | - <b>H</b> | <b>.</b> | ×.       | ÷.,   |
|         |            | 10.0     | 193      |       |
|         | - R        |          | <u>م</u> | . *   |
|         | . 7        |          | S        | ÷.,   |
|         |            |          | 3        | ÷., 1 |
| 10.0    | : <b>z</b> |          |          | ÷.    |
| · · ·   | 1.0        | 1.14     | - 1 - 1  | · · · |
| ·       | 1.1        | 1        | · 9 ·    | • • • |
|         | ?          |          |          | • •   |
|         | - 54       | ÷        | s -      |       |
|         | 1.1        | -        | •        | 11    |
| · · · . | . 14       |          | ÷.       | ÷.,   |
|         | ÷.         | 1.1.1    |          | ×     |
| 100     | ംര         | <b>.</b> | ·        |       |
| 1.4.4   | - 22       | e 12     | ÷        | ÷.,   |
| . 2     | e          | ~        | - 101    |       |
|         | × 1        | н.       | œ        | ÷     |
| · · · · |            | 1.0      | 88       |       |
|         | а.         | : 92     | 10       | с.    |
|         |            | × .      | سر       | ÷.,   |
|         |            |          |          |       |

| CLIENT PROJECT NAME / NUMBER:<br>WETA<br>WETA<br>PROJECT CONTACT<br>PROJECT CONTACT<br>PROJECT CONTACT<br>PROJECT CONTACT | A ZIP 94949<br>A ZIP 94949<br>STANDARD<br>STANDARD |                                                                                                                 |                                                  | s Inc.<br>s Inc.<br>ats@eurof<br>ddy.roch<br>HR □<br>LING                               | 740 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 865-5494       For counter service I sample drop off information. contact us26, sates@eurofinsus.com       JubBORATORY CLIENT     Foth and Van Dyke & Associates inc.       ADDRESS     10 Commercial Blvd - Suite 100       ADDRESS     10 Commercial Blvd - Suite 100       Image: Sold of the state of the sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLENF PROJECT NAME /<br>WETA<br>PROJECT CONTACT<br>Wendy Rocha<br>Prease                                                  | 3TANDAF                                            | S = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 =                                                                         | <u>کا اور اور اور اور اور اور اور اور اور او</u> |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Wendy Rocha<br>Wendy Rocha                                                                                                | ZIP. 9                                             |                                                                                                                 |                                                  | STATE C<br>STATE C<br>STATE C<br>STATE C<br>STATE C<br>ADD<br>STATE C<br>ADD<br>STATE C | alt wendy rocha@foth.com Tat not stattbatt") Tat not stattbatt" Tat not stattbatt" Tat not stattbatte Tat not sold Sizota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wendy Rocha                                                                                                               | ZIP-<br>94949<br>94049<br>PANDARD                  |                                                                                                                 | S O O                                            | STATE C<br>Cocha@foth.com<br>abr)<br>D 5 DAYS E<br>D 5 DAYS E<br>NATRIX                 | AIL WENCY LOCHAQIOTH.COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REQUES Please check box or fi                                                                                             | ANDARD                                             | È. E                                                                                                            |                                                  | Iocha@foth.com                                                                          | at <u>wendy rocha@foth.com</u><br>Tat not statubato')<br>Tat not statubato')<br>Tat not statubato')<br>Tat not statubato')<br>Tat not statubato')<br>Same Inot<br>Same Inot |
| Please check box of fi                                                                                                    | NDARD<br>I Docod                                   | VII:                                                                                                            |                                                  | TIME MATRIX                                                                             | TAT Pail STANDARD")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                           | LDG CODI                                           |                                                                                                                 |                                                  | MATRIX                                                                                  | MPLING<br>TTME MATRIX<br>500 SOIL<br>500 SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                           | A THE TANK AND AND A THE REAL OF A DECK            |                                                                                                                 |                                                  | MATRIX                                                                                  | MEPLING<br>INTRIX<br>100 SOIL<br>900 SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                           | pevi<br>Devi                                       |                                                                                                                 |                                                  | MATRIX C                                                                                | MPLING<br>TIME MATRIX<br>500 SOIL<br>900 SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nsbi<br>grO I<br>fe ei<br>muin                                                                                            | i.ese                                              | 02                                                                                                              |                                                  | MATRIX                                                                                  | TIME MATRIX<br>900 SOIL<br>900 SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ele<br>Kroi<br>Chia                                                                                                       | lun                                                | 5 CON                                                                                                           |                                                  |                                                                                         | 300 SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           | ×                                                  | 4                                                                                                               |                                                  | SOIL                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                           | ×                                                  |                                                                                                                 | SolL 1                                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                           | X                                                  | <b>F</b>                                                                                                        | soil 1                                           | 1225 SOIL 1                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                           | ×                                                  |                                                                                                                 | SOIL 1                                           | 1225 SOL 1                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                           | X                                                  | -<br>                                                                                                           | SOIL 1                                           | 1115 SOIL 1                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                           | X                                                  | <b>.</b>                                                                                                        | SOIL 1                                           | 1115 SOL                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                           | ×                                                  | Ŧ                                                                                                               | soll 1                                           |                                                                                         | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                           | X                                                  | tin de la companya de | SOIL 1                                           | 1330 SOIL                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                           | ×                                                  |                                                                                                                 | SOIL 1                                           |                                                                                         | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                           | ×                                                  | f                                                                                                               | soll 1                                           | 1330 SOIL 1                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| r. (Signature/Affiliation)                                                                                                | Received by: (S                                    | Rect                                                                                                            | Rece                                             |                                                                                         | (Relmanished (2) 1345)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Received by (Signature/Affiliation) WOWOLF ECT                                                                            | seived by: (S                                      | a<br>A                                                                                                          |                                                  |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Received by: (Signature/Affiliation)                                                                                      | sceived by: (S                                     | Å                                                                                                               |                                                  |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| 🔅 eurofins                                                                                                                                                                                                                                                                                                                                                                                                            | WORK ORDEI                                                                                 | R NUMBER                           | : <u>18<sup>2</sup>°C</u> | <b>15</b> 45 O                    | <b>39</b> 53 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|---------------------------|-----------------------------------|--------------|
| Calscience<br>SAMPLE RECEIPT                                                                                                                                                                                                                                                                                                                                                                                          | CHECKLIST                                                                                  | C                                  | OOLER                     | ۱ ۵                               | ı <b>F</b> ( |
| CLIENT: FORH + VANI DYNE + ASSOCIATES                                                                                                                                                                                                                                                                                                                                                                                 | ONEONEIOT                                                                                  |                                    | : 05/                     |                                   |              |
| TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sedim                                                                                                                                                                                                                                                                                                                                                        | ······································                                                     | DAIL                               |                           |                                   |              |
| Thermometer ID: SC6 (CF: +0.1°C); Temperature (w/o CF):<br>□ Sample(s) outside temperature criteria (PM/APM contacted b<br>□ Sample(s) outside temperature criteria but received on ice/ch                                                                                                                                                                                                                            | <u>.∧</u> °C (w/ CF): <u>₹</u><br>!y:)                                                     |                                    | ⊠ Blanl                   | ( ⊡8                              | Sample       |
| □ Sample(s) received at ambient temperature; placed on ice for tra<br>Ambient Temperature: □ Air □ Filter                                                                                                                                                                                                                                                                                                             |                                                                                            |                                    | Checke                    | d by: 💆                           | <u>ey</u>    |
| CUSTODY SEAL:         Cooler       Present and Intact         Sample(s)       Present and Intact                                                                                                                                                                                                                                                                                                                      | ☑ Not Present<br>☑ Not Present                                                             | □ N/A<br>□ N/A                     | Checke<br>Checke          | d by: <u>A</u><br>d by: <u>4</u>  | 26<br>476    |
| SAMPLE CONDITION:                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |                                    | Yes 🗡                     | No                                | N/A          |
| Chain-of-Custody (COC) document(s) received with samples                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |                                    | ď,                        |                                   |              |
| COC document(s) received complete                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |                                    | ø                         |                                   |              |
| □ Sampling date □ Sampling time □ Matrix □ Number of c                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                    |                           |                                   |              |
| No analysis requested  Not relinquished  No relinquish                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                    | 1                         | <b>—</b>                          | _            |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                    |                           |                                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                    |                           |                                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                    | ø                         |                                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                    | J.                        |                                   |              |
| Sufficient volume/mass for analyses requested                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                    |                           |                                   |              |
| Samples received within holding time                                                                                                                                                                                                                                                                                                                                                                                  | ·····                                                                                      |                                    | B                         |                                   |              |
| Aqueous samples for certain analyses received within 15-minut                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                    | rn.                       | m                                 |              |
| □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |                                    |                           |                                   |              |
| Proper preservation chemical(s) noted on COC and/or sample con<br>Unpreserved aqueous sample(s) received for certain analyses                                                                                                                                                                                                                                                                                         | aner                                                                                       |                                    |                           |                                   | ы            |
| □ Volatile Organics □ Total Metals □ Dissolved Metals<br>Acid/base preserved samples - pH within acceptable range                                                                                                                                                                                                                                                                                                     |                                                                                            |                                    |                           |                                   | <b></b>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                    |                           |                                   |              |
| □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissol                                                                                                                                                                                                                                                                                                                                                              | ved Oxygen (SM 450                                                                         | 90)                                |                           |                                   |              |
| □ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ H<br>Tedlar™ bag(s) free of condensation                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                    |                           | ۵                                 | 6            |
| CONTAINER TYPE:                                                                                                                                                                                                                                                                                                                                                                                                       | (Trip Blan                                                                                 | <pre>c Lot Numbe</pre>             | <b>.</b>                  |                                   | }            |
| Aqueous:       □ VOA       □ VOAh       □ VOAna₂       □ 100PJ       □ 100PJ na₂       □ 125AGB         □ 250AGB       □ 250CGB       □ 250CGBs       (pH_2)       □ 250PB       □ 250PBn (pH_2)         □ 1AGB       □ 1AGBna₂       □ 1AGBs       (pH_2)       □ 1AGBs       (0&G)       □ 1PB                                                                                                                      | 3 □ 125AGBh □ 125A<br>2) □ 500AGB □ 500.                                                   | NGB <b>p ⊡</b> 125P<br>AGJ ⊡ 500AG | B □ 125F<br>Js (pH        | °Bznna (p<br>2)   □ 500           | )PB          |
| Solid: ☑ 4ozCGJ □ 8ozCGJ ☑ 16ozCGJ □ Sleeve () □ EnCores® (         Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other                                                                                                                                                                                                                                                                                            | ) 🛛 TerraCores® ()                                                                         | _) <u>B</u> 202CC                  | A R TW                    | <u>مد</u>                         |              |
| Container: <b>A</b> = Amber: <b>B</b> = Bottle, <b>C</b> = Clear, <b>E</b> = Envelope, <b>G</b> = Glass, J =<br>Preservative: <b>b</b> = buffered, <b>f</b> = filtered, <b>h</b> = HCl, <b>n</b> = HNO <sub>3</sub> , <b>na</b> = NaOH, <b>na</b><br><b>s</b> = H <sub>2</sub> SO <sub>4</sub> , <b>u</b> = ultra-pure, <b>x</b> = Na <sub>2</sub> SO <sub>3</sub> +NaHSO <sub>4</sub> -H <sub>2</sub> O, <b>znna</b> | ${\bf n}_2 = {\bf N}{\bf a}_2 {\bf S}_2 {\bf O}_3,  {\bf p} = {\bf H}_3 {\bf P} {\bf O}_3$ | o₄, Labeleo                        |                           | d by: $\underline{\underline{A}}$ |              |

# 🔅 eurofins

Calscience

## **Subcontractor Analysis Report**

### Work Order: 18-05-0353

One or more samples in this work order have tests that were subcontracted. The subcontract report(s) follows.

For subcontracted tests, please reference the laboratory information noted below.

- ALS Columbia Analytical Services, Inc. Kelso,WA CA ELAP 2286, NELAP WA100010 EPA 7742 Selenium
- 2. Frontier Analytical Laboratories El Dorado Hills,CA NELAP 02113CA Dioxins / Furans

Page 1 of 1





June 5, 2018

### FAL Project ID: 11566

Ms. Carla Lee Hollowell Eurofins Calscience, Inc. 7440 Lincoln Way Garden Grove, CA 92841-1427

Dear Ms. Hollowell,

The following results are associated with Frontier Analytical Laboratory project **11566**. This corresponds to your project number **18-05-0353** / **WETA**. One sediment sample was received on 5/10/2018. This sample was extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your sample has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). Eurofins Calscience Inc. requested a fifteen business day turnaround time for project **11566**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The attached results and electronic data deliverable (EDD) are specifically for the sample referenced in this report only. These results meet all National Environmental Laboratory Accreditation Program (NELAP) requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041** and our State of California ELAP certificate number is **2934**. This report and the EDD have been emailed to you. A hardcopy of this report will not be sent to you unless specifically requested.

If you have any questions regarding project **11566**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

may Claptree

Thomas C. Crabtree Director

FRONTIER ANALYTICAL LABORATORY 5172 Hillsdale Circle \* El Dorado Hills, CA 95762 Tel (916) 934-0900 \* Fax (916) 934-0999 www.frontieranalytical.com



# Frontier Analytical Laboratory

## Sample Tracking Log

## FAL Project ID: 11566

| Re               | ceived or | n: <u>05/10/2018</u> |                     | Project Due:        | <u>06/04/2018</u> | Storage:         | <u>R-4</u>       |                       |
|------------------|-----------|----------------------|---------------------|---------------------|-------------------|------------------|------------------|-----------------------|
| FAL<br>Sample ID | Dup       | Client<br>Project ID | Client<br>Sample ID | Requested<br>Method | Matrix            | Sampling<br>Date | Sampling<br>Time | Hold Time<br>Due Date |
| 11566-001-SA     | 0         | 18-05-0353           | DU-1 Composite      | EPA 1613 D/F        | Sediment          | 05/03/2018       | 09:00 am         | 05/03/2019            |

## EPA Method 1613 PCDD/F



| FAL ID: 11566-001-MB<br>Client ID: Method Blank<br>Matrix: Sediment<br>Batch No: X4528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date                                                                                                                                                  | Extracted: 05-<br>Received: NA<br>unt: 5.00 g                                                                                                                                                                                             |      |                                                          | DFAL4-12-2<br>nn: DB5MS<br>g                                                                            |                                                                                                                                                                                                                                                                                                            | Acquired: 05<br>2005 WHO T<br>Basis: Dry W                                                                                                                                                | EQ: 0.0                                                                                                          |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Con                                                                                                                                                   | ic DL                                                                                                                                                                                                                                     | Qual | 2005<br>WHO Tox                                          | MDL                                                                                                     | Compound                                                                                                                                                                                                                                                                                                   | Conc                                                                                                                                                                                      | DL                                                                                                               | Qual                        |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>0CDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NI<br>NI<br>NI<br>NI<br>NI<br>NI                                                                                                                      | D 0.213<br>D 0.207<br>D 0.211<br>D 0.192<br>D 0.174                                                                                                                                                                                       |      | -<br>-<br>-<br>-<br>-                                    | 0.0273<br>0.0570<br>0.0793<br>0.0940<br>0.0823<br>0.0842<br>0.172                                       | Total TCDD<br>Total PeCDD<br>Total HxCDD<br>Total HpCDD                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                  | 0.105<br>0.213<br>0.211<br>0.174                                                                                 |                             |
| 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>0CDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | D 0.179<br>D 0.184<br>D 0.114<br>D 0.121<br>D 0.131<br>D 0.150<br>D 0.147<br>D 0.166                                                                                                                                                      |      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.0269<br>0.0449<br>0.0468<br>0.0437<br>0.0417<br>0.0574<br>0.0574<br>0.0747<br>0.0883<br>0.170         | Total TCDF<br>Total PeCDF<br>Total HxCDF<br>Total HxCDF                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                  | 0.0846<br>0.184<br>0.150<br>0.166                                                                                |                             |
| Internal Standards<br>13C-2,3,7,8-TCDD<br>13C-1,2,3,7,8-PeCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,6,7,8-HxCDD<br>13C-1,2,3,4,6,7,8-HpCDD<br>13C-2,3,7,8-PeCDF<br>13C-1,2,3,7,8-PeCDF<br>13C-1,2,3,4,7,8-HxCDF<br>13C-1,2,3,4,7,8-HxCDF<br>13C-1,2,3,7,8-HxCDF<br>13C-1,2,3,7,8,9-HxCDF<br>13C-1,2,3,4,6,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HpCDF<br>13C-1,2,3,4,7,8,9-HpCDF<br>13C-1,2,3,4,7,8,9-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-1,2,3,4,7,8,9-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,6,7,8-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF<br>13C-2,2,4,7,8,9-HpCDF | % Rec<br>76.5<br>76.3<br>78.3<br>77.0<br>76.1<br>73.2<br>74.4<br>74.2<br>73.9<br>81.8<br>80.7<br>81.3<br>80.7<br>81.3<br>80.7<br>82.0<br>84.2<br>79.2 | QC Limits<br>25.0 - 164<br>25.0 - 181<br>32.0 - 141<br>28.0 - 130<br>23.0 - 140<br>17.0 - 157<br>24.0 - 169<br>24.0 - 185<br>21.0 - 178<br>26.0 - 152<br>26.0 - 123<br>28.0 - 136<br>29.0 - 147<br>28.0 - 143<br>26.0 - 138<br>17.0 - 157 | Qual |                                                          | A sig<br>B Ar<br>C Cl<br>D Pr<br>DNQ Ar<br>F Ar<br>J Ar<br>M M<br>ND Ar<br>NP Nr<br>P Pr<br>S Sa<br>X M | otopic Labeled S<br>gnal to noise rati<br>halyte is present<br>hemical Interfere<br>resence of Diphe<br>halyte concentra<br>halyte concentra<br>halyte concentra<br>aximum possible<br>halyte Not Detec<br>of Provided<br>re-filtered throug<br>ample acceptance<br>atrix interference<br>esult taken from | o is >10:1<br>in Method Bl<br>ance<br>anyl Ethers<br>tion is below<br>tion is above<br>on on second<br>tion is below<br>a concentratic<br>ted at Detect<br>h a Whatmar<br>ce criteria not | ank<br>calibration r<br>calibration r<br>lary column<br>calibration r<br>on<br>ion Limit Lev<br>0.7um GF/<br>met | ange<br>ange<br>ange<br>vel |
| 37CI-2,3,7,8-TCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69.9                                                                                                                                                  | 35.0 - 197                                                                                                                                                                                                                                |      |                                                          |                                                                                                         |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                  |                             |

Analyst: 6/4/2018 Date:

Reviewed By: Dr Date: 6/4/2018

000003 of 000008

## EPA Method 1613 PCDD/F



| FAL ID: 11566-001-OPR<br>Client ID: OPR<br>Matrix: Sediment<br>Batch No: X4528                                                                                                                                                                                                                                                                                                                      | Date Extracted: 05-25-2018<br>Date Received: NA<br>Amount: 5.00 g                                                                                                                                              | B ICal: PCDDF<br>GC Column:<br>Units: ng/ml | AL4-12-20-17<br>DB5MS                                                                                                                                                                                                                                                               | Acquired: 05-31-2018<br>2005 WHO TEQ: NA                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                            | Conc QC Limits                                                                                                                                                                                                 | Qual                                        |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>0CDD                                                                                                                                                                                                                                                                       | 10.9       6.70 - 15.8         55.5       35.0 - 71.0         52.8       35.0 - 82.0         53.7       38.0 - 67.0         53.5       32.0 - 81.0         54.7       35.0 - 70.0         107       78.0 - 144 |                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |
| 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>0,20F                                                                                                                                                                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                           |                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |
| Internal Standards                                                                                                                                                                                                                                                                                                                                                                                  | % Rec QC Limits                                                                                                                                                                                                | Qual                                        |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |
| 13C-2,3,7,8-TCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,6,7,8-HxCDD<br>13C-1,2,3,4,6,7,8-HpCDD<br>13C-0CDD<br>13C-2,3,7,8-TCDF<br>13C-1,2,3,4,7,8-PeCDF<br>13C-1,2,3,4,7,8-HxCDF<br>13C-1,2,3,4,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HpCDF<br>13C-1,2,3,4,7,8,9-HpCDF<br>13C-1,2,3,4,7,8,9-HpCDF<br>13C-1,2,3,4,7,8,9-HpCDF | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                           |                                             | A signal to noise r<br>B Analyte is prese<br>C Chemical Interfe<br>D Presence of Dip<br>DNQ Analyte concent<br>E Analyte concent<br>F Analyte confirma<br>J Analyte concent<br>M Maximum possi<br>ND Analyte Not Det<br>NP Not Provided<br>P Pre-filtered throw<br>S Sample accepta | ent in Method Blank<br>erence<br>whenyl Ethers<br>tration is below calibration range<br>tration is above calibration range<br>ation on secondary column<br>tration is below calibration range<br>ble concentration<br>sected at Detection Limit Level<br>ugh a Whatman 0.7um GF/F filter<br>ance criteria not met |
| Cleanup Surrogate<br>37Cl-2,3,7,8-TCDD                                                                                                                                                                                                                                                                                                                                                              | 82.6 31.0 - 191                                                                                                                                                                                                |                                             | X Matrix interferer<br>* Result taken fro                                                                                                                                                                                                                                           | nces<br>m dilution or reinjection                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                     | 02.0 01.0 101                                                                                                                                                                                                  |                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |

| Analyst:       |
|----------------|
| Date: 6/4/2018 |

| Review | wed By: | DfV |
|--------|---------|-----|
| Date:  | 6/4/20  | 18  |

000004 of 000008

## EPA Method 1613 PCDD/F



| DL Qual<br>0.215<br>- J<br>- J<br>- J<br>- J<br>- J<br>- J<br>-                                                            | 2005<br>WHO Tox<br>0.694<br>0.0824<br>0.255<br>0.164                                                                 | 0.0273<br>0.0570<br>0.0793                                                                                                                                                                                                | ompound                                                                                                                                                                                                                                                                                                            | Conc                                                                                                                                           | DL                                                                                                                                                                                                              | Qual                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - J<br>- J<br>- J<br>- J                                                                                                   | 0.0824<br>0.255<br>0.164                                                                                             | 0.0570<br>0.0793                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |
|                                                                                                                            | 0.267<br>0.0465                                                                                                      | 0.0823 Tota<br>0.0842 Tota                                                                                                                                                                                                | tal TCDD<br>al PeCDD<br>al HxCDD<br>al HpCDD                                                                                                                                                                                                                                                                       | 5.41<br>7.09<br>26.6<br>68.6                                                                                                                   | -<br>-<br>-                                                                                                                                                                                                     |                                                                                                                                                                                                                       |
| - F<br>- J<br>- J<br>- J<br>- J<br>- J<br>- J<br>- J<br>- J                                                                | $\begin{array}{c} 0.203\\ 0.0196\\ 0.381\\ 0.104\\ 0.0877\\ 0.104\\ 0.0420\\ 0.0652\\ 0.00640\\ 0.00390 \end{array}$ | 0.0747 Tota<br>0.0883 Tota                                                                                                                                                                                                | tal TCDF<br>al PeCDF<br>al HxCDF<br>al HxCDF<br>al HpCDF                                                                                                                                                                                                                                                           | 20.8<br>13.3<br>13.0<br>18.0                                                                                                                   | -<br>-<br>-                                                                                                                                                                                                     | D,M                                                                                                                                                                                                                   |
| imits Qual<br>164<br>181<br>141<br>130<br>140<br>157<br>169<br>185<br>178<br>152<br>123<br>136<br>147<br>143<br>138<br>157 |                                                                                                                      | A signal to r<br>B Analyte is<br>C Chemical<br>D Presence<br>DNQ Analyte co<br>F Analyte co<br>J Analyte co<br>J Analyte co<br>M Maximum<br>ND Analyte N<br>NP Not Provid<br>P Pre-filtere<br>S Sample a<br>X Matrix inte | oncentration o<br>oncentration o<br>possible cor<br>ot Detected a<br>ded<br>d through a t<br>cceptance cr<br>erferences                                                                                                                                                                                            | >10:1<br>Iethod Blani<br>Ethers<br>is below cal<br>is below cal<br>is below cal<br>ncentration<br>at Detection<br>Whatman 0.<br>iteria not me  | k<br>ibration rai<br>y column<br>ibration rai<br>Limit Leve<br>7um GF/F<br>et                                                                                                                                   | nge<br>nge<br>nge                                                                                                                                                                                                     |
|                                                                                                                            | 169<br>185<br>178<br>152<br>123<br>136<br>147<br>143<br>138                                                          | 169<br>185<br>152<br>123<br>136<br>147<br>143<br>138<br>157                                                                                                                                                               | DNQ Analyte of<br>E Analyte of<br>F Analyte of<br>J Analyte of<br>J Analyte of<br>Analyte of<br>J Analyte of<br>M Maximum<br>Maximum<br>M Maximum<br>ND Analyte N<br>ND Analyte N<br>ND Analyte N<br>ND Analyte N<br>ND Analyte N<br>ND Analyte N<br>ND Analyte of<br>S Sample a<br>X Matrix inter<br>* Result tak | DNQ Analyte concentration169E185F178J152J123M136ND147143NP138P157SSample acceptance or<br>XXMatrix interferences<br>**Result taken from dilute | DNQ Analyte concentration is below cal169E185F178F152J123Analyte concentration is below cal136M147ND143NP158P159Sample acceptance criteria not me157XXMatrix interferences*Result taken from dilution or reinje | DNQ Analyte concentration is below calibration rar169E185F178F152J123Analyte concentration is below calibration rar136J147Maximum possible concentration143ND138P157S157S158Result taken from dilution or reinjection |

Analyst:\_\_\_\_\_ Date: <u>6/4/2018</u>

| Reviewed By:   | / |
|----------------|---|
| Date: 6/4/2018 |   |

Return to Contents

| <b>6</b><br>9<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | eurofins                                             | Welcele:      | 1.00 <del>1</del> . | ){       | <b>FRON</b><br>566 | ITIE        | ER -                  | EL             |                     | <b>)R/</b><br>#/Lat |                    |          | LLS                  | <b>.</b>    | (                 |                           |              |                   | AIN         | OF                     |                                    | <b>ISTO</b><br>5/09/      | <b>ODY</b><br>/18  | ' RE | co | RD       | J   |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|---------------------|----------|--------------------|-------------|-----------------------|----------------|---------------------|---------------------|--------------------|----------|----------------------|-------------|-------------------|---------------------------|--------------|-------------------|-------------|------------------------|------------------------------------|---------------------------|--------------------|------|----|----------|-----|
|                                                                                                         | coln Way, Garden Grove, CA 926                       |               |                     | C        | 566                | <i></i>     |                       |                |                     |                     |                    |          |                      |             |                   | Р                         | AGE:         |                   |             | 1                      |                                    | ÛF                        |                    |      | 1  |          | _   |
|                                                                                                         |                                                      | NS CALSC      |                     |          | f call us.         |             |                       |                | 1                   | 8-05                | -03                | 53 /     |                      |             |                   |                           |              |                   |             | P.O                    |                                    |                           |                    |      |    |          |     |
| CITY.                                                                                                   | GARDEN GROVE                                         |               |                     | STATE:   | ZiP                | <u>.</u>    |                       |                | 4                   | JECT C              |                    |          | HOL                  | LOV         | VEL               | L                         |              |                   |             | 5AM                    | HLER(S                             | i): (PRIN                 | 1)                 |      |    |          |     |
| TEL:                                                                                                    |                                                      | E-MAIL:<br>Ca | rlahollow           | ell@euro | ofinsus.           | com         |                       |                |                     |                     |                    |          |                      |             | REC               | UES                       | TEC          | ) AN              | ALY         | SES                    | 3                                  |                           |                    |      |    |          | 1   |
|                                                                                                         | ROUND TIME (Rush surcharges may ap                   |               |                     |          |                    |             |                       |                |                     |                     | ,                  | Pl       | ease c               | heck b      | ox or l           | fil) in bl                | ank as       | s need            | ed.         | 1                      | 1                                  |                           |                    |      |    |          | 1   |
|                                                                                                         | ME DAY D 24 HR D<br>DELT EDF                         | 148 HR 🛛      | 72 HR 🛛             | 5 DAYS   | □ STAN             |             | )<br>CODE:            |                |                     |                     |                    |          |                      |             |                   | Terra Core                |              |                   |             |                        | 6020/747X                          | 218.6                     | 3B                 |      |    |          |     |
| Rej<br>15                                                                                               | Dort in dry weight (n<br>day TAT<br>ase provide DMMO |               |                     |          |                    | erved       | bei                   | Itered         | TPH(g) 🗆 GRO        | TPH(d) 🗆 DRO        | □ C6-C36 □ C6-C44  |          | BTEX / MTBE 🗆 8260 🗆 | 8260)       | Oxygenates (8260) | Prep (5035) 🛛 En Core 🗆 T | SVOCs (8270) | Pesticides (8081) | 8082)       | PAHs 🗆 8270 🗆 8270 SIM | T22 Metals □ 6010/747X □ 6020/747X | Cr(VI) 🗆 7196 🗆 7199 🗖 21 | Dioxins/Furans 161 |      |    | Sample # | 1   |
| LAB<br>USE<br>ONLY                                                                                      | SAMPLE ID                                            | SAMF<br>DATE  | LING<br>TIME        | MATRIX   | NO.<br>OF<br>CONT. | Unpreserved | Preserved             | Field Filtered | Hd L                | HdT 🗆               | E Hat              | Hdl      | BTEX /               | VOCs (8260) | Oxyger            | Prep (5                   | SVOC         | Pesticio          | PCBs (8082) | PAHs (                 | T22 Me                             | Cr(VI) I                  | Dioxi              |      |    | ECI S    |     |
|                                                                                                         | DU-1 Composite                                       | 5/3/18        | 900                 | SED      | 1                  |             |                       |                |                     | ļ                   |                    |          |                      |             |                   |                           |              |                   |             |                        |                                    | <u> </u>                  | x                  |      |    | 1        | ] ( |
|                                                                                                         |                                                      | -             |                     |          |                    |             |                       |                |                     |                     |                    | :        | :                    |             |                   |                           |              |                   |             | <br>                   |                                    |                           |                    |      |    |          |     |
|                                                                                                         |                                                      |               |                     |          |                    |             |                       |                |                     |                     |                    | <u> </u> |                      |             |                   |                           |              |                   |             |                        | <u> </u>                           | <del> </del>              | <u> </u>           |      |    |          |     |
|                                                                                                         |                                                      |               |                     |          |                    |             |                       |                |                     |                     |                    |          |                      |             |                   |                           |              |                   |             |                        |                                    | <u> </u>                  |                    |      |    |          |     |
|                                                                                                         |                                                      |               |                     |          |                    |             |                       |                |                     |                     |                    |          |                      |             |                   |                           |              |                   |             |                        |                                    |                           |                    |      |    |          |     |
|                                                                                                         |                                                      |               |                     |          |                    | <u> </u>    | <br>                  |                | ╞                   |                     |                    |          |                      |             |                   |                           |              |                   |             |                        | ļ                                  |                           |                    | <br> |    |          |     |
|                                                                                                         |                                                      | ***           |                     |          |                    |             |                       |                | $\left  \right $    |                     |                    |          |                      |             |                   |                           |              |                   |             |                        |                                    | <u> </u>                  |                    |      |    |          |     |
|                                                                                                         |                                                      |               |                     |          |                    | -           |                       |                |                     |                     |                    |          |                      |             |                   |                           |              |                   |             | <u> </u>               |                                    | <b> </b>                  |                    |      |    |          |     |
| Relinqu                                                                                                 | ished by: (Signature)                                | Wal           | AL1                 | 1        | Rec                | eived b     | ,<br>iy: (Sigr<br>くしへ | nature/        | /Affiliati<br>2 4 4 | on)<br>ว            | 1                  | 1        | 1                    |             |                   |                           |              |                   | Date<br>5/  | 9/1                    | <u> </u>                           | <u></u>                   | Time<br>I_S        | so   |    |          | 1   |
| Relingu                                                                                                 | ished by: (Signature)                                | 110 C         | ~                   |          | Rec                | eived b     | y: (Sigr              | naturei        | /Affiliati          | .on)                | 2                  | )        |                      |             |                   |                           |              |                   | Date        | ¢ .                    | <u> </u>                           | <br><                     | Time               |      |    |          |     |
| Relinqu                                                                                                 | ished by (Signature)                                 |               |                     |          | Rec                | eived b     | y: (Sigr              | nature         | Afiliati            | ion)                | <del>}.</del><br>} |          |                      |             |                   |                           |              |                   | Date        |                        | <u> </u>                           | ·                         |                    | 0000 |    | 0000     | 08  |



# Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11566

| Client:                | Eurofins Calscience, Inc. |
|------------------------|---------------------------|
| Client Project ID:     | 18-05-0353                |
| Date Received:         | 05/10/2018                |
| Time Received:         | 10:05 am                  |
| Received By:           | KZ                        |
| Logged In By:          | SL                        |
| # of Samples Received: | 1                         |
| Duplicates:            | 0                         |
| Storage Location:      | R-4                       |

| Method of Delivery:                       | Golden State Overnight |
|-------------------------------------------|------------------------|
| Tracking Number:                          | 540523440              |
| Shipping Container Received Intact        | Yes                    |
| Custody seals(s) present?                 | Yes                    |
| Custody seals(s) intact?                  | Yes                    |
| Sample Arrival Temperature (C)            | 0                      |
| Cooling Method                            | lce                    |
| Chain Of Custody Present?                 | Yes                    |
| Return Shipping Container To Client       | Yes                    |
| Test aqueous sample for residual Chlorine | No                     |
| Sodium Thiosulfate Added                  | No                     |
| Adequate Sample Volume                    | Yes                    |
| Appropriate Sample Container              | No                     |
| pH Range of Aqueous Sample                | N/A                    |
| Anomalias ar additional commants:         |                        |

Anomalies or additional comments:

Please note that the sample was received in a clear glass jar. NELAP requires samples be received in amber glass bottles or jars. Although this anomaly will not affect your results, we are required by NELAP to make a note of it. We will proceed with analysis unless directed otherwise by you.

Return to Contents



| 006 | Lincoln Wey, Garten Grove, CA o<br>Surfer service / sample drop of in<br>SKATORY CLEAN:<br>EUROF | INS CALS | CIENCE    | eurofineus com | or call us.        | _        | _         | _          |                 |                |                   |       | (ALM)        |             |                     | -                | PAG          | E:                |             | 1                         |                                      | _ 9                         | )F                   |          | 1 |
|-----|--------------------------------------------------------------------------------------------------|----------|-----------|----------------|--------------------|----------|-----------|------------|-----------------|----------------|-------------------|-------|--------------|-------------|---------------------|------------------|--------------|-------------------|-------------|---------------------------|--------------------------------------|-----------------------------|----------------------|----------|---|
| Y.  | GARDEN GROVE                                                                                     |          |           |                |                    | -        | -         | _          | - 1             |                | 5-03              | 53 /  | WE           |             |                     | -                |              |                   |             |                           | 0 MO.                                |                             |                      |          |   |
| Ľ   |                                                                                                  | E-MAL    | arlaholla | STATE          | 2                  |          |           | _          |                 |                |                   |       | HO           | LLO         | WEL                 | L                |              |                   |             | a                         | MPLER                                | 050 1718                    | N75                  |          |   |
| S   | AROUND TIME (Rush surcharges may a<br>AME DAY 24 HR                                              |          | STANDANDT |                | _                  | _        |           |            |                 |                |                   |       |              |             | REG                 | QUE              | STE          | DA                | NAL         | YSE                       | s                                    |                             |                      | -        | _ |
|     | OELT EDF                                                                                         |          | 72 HR [   | J 5 DAYS       | STAN               | LOO      | D         | _          | F               | Т              | Γ                 | TÎ    | lease        | check       | bax ar              | Core Core        | stank a      | 15 000            | ced.        | T                         | X                                    | T                           | -                    |          |   |
| 0   | port in dry weight (n<br>day TAT<br>ase provide DMMO                                             | EDD      |           |                |                    | pave     | 8         | poue       | D TIPHUR) D GRO | C TPH(s) C DRO | TPH CIECCE CIEC44 |       | TBE D 0000 D | (00)        | Orrygemates (\$265) | En Core D Terra  | 200)         | (\$081)           | 15          | MAN CLEAR CLEAR CLEAR SAM | 722 Metals ID 6015/747X ID 6020/747X | C(VI) D 7156 D 7159 D 215.6 | Dioxins/Furans 1613B |          |   |
|     | SAMPLE ID                                                                                        | DATE     | TIME      | MATRIX         | NO.<br>OF<br>CONT. | Unprese  | Pietarved | Field Fill | D TIPHUS        | D TPHN         | TPHO              | HILL  | BTEX/MTBE    | VDCs (8060) | (Crosses)           | Pres (5006) E En | SVDC= (8270) | Penticides (8081) | PCBs (Sce2) | HS D 82                   | 2 Metals                             | ND D II                     | Dxins/I              |          |   |
|     | DU-1 Composite                                                                                   | 5/3/18   | 900       | SED            | 1                  |          |           |            |                 |                |                   |       |              |             |                     |                  |              |                   |             |                           |                                      | -                           | ×                    | +        | Ť |
|     |                                                                                                  |          |           |                |                    |          |           |            |                 |                | -                 |       |              |             | -                   |                  | -            |                   |             | -                         | -                                    | -                           | +                    | -        | ŧ |
|     |                                                                                                  |          |           |                |                    |          |           | -          | -               | -              | +                 | -     | +            | +           | +                   | +                | 1            | 1                 | 1           | 1                         | -                                    |                             | +                    |          |   |
|     |                                                                                                  |          |           |                | - Fro              | rder A   | naly      | tical I    | Labo            | ratory         | ,                 | -     | +            | +           | +                   | +                | 1            | 1                 | +           | +                         | 1                                    | +                           | +                    |          |   |
|     |                                                                                                  |          | 1         |                | 11                 | 56       | 6-        | 00         | )1-             | S              | 4                 |       | T            |             | 1                   |                  | t            | 1                 | t           | 1                         | 1                                    | +                           | F                    |          |   |
|     | Ished by: (Signature)                                                                            | Mgra     | ky_       |                | -                  | (ID: D   | 4         | Com        | posit<br>(0)    | te<br>1 of 0   | 1)                | 1     |              | _           | _                   | -                |              | 5 3               | 19/         | 18-                       |                                      | Tim                         | \$50                 |          |   |
|     | ished by (Signature)                                                                             |          |           |                | D                  | ern<br>U | no.       | 100        | 98              | -              | Canto             | and a |              |             |                     |                  |              | Dan               | *           | 14                        | 5                                    | Time                        | 000                  | 2        | - |
|     |                                                                                                  |          |           |                | 1                  |          |           | 100        | 5               | -              |                   | P     |              |             |                     |                  |              |                   |             |                           |                                      |                             | 06/02                | 14 Revis |   |



Service Request No:K1804396

Carla Hollowell Calscience Environmental Laboratories, Incorporated 7440 Lincoln Way Garden Grove, CA 92841-1427

## Laboratory Results for: WETA

Dear Carla,

Enclosed are the results of the sample(s) submitted to our laboratory May 10, 2018 For your reference, these analyses have been assigned our service request number **K1804396**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3342. You may also contact me via email at Amanda.Juell@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Amanda Juli

Amanda Juell Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Page 56 of 76

Ì

Return to Co



# Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER



| Client:        | Eurofins Calscience Environmental Laboratory | Servi |
|----------------|----------------------------------------------|-------|
| Project:       | WETA                                         | Dat   |
| Sample Matrix: | Soil                                         |       |

### Service Request: K1804396 Date Received: 05/10/2018

### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS).

### Sample Receipt:

One soil sample was received for analysis at ALS Environmental on 05/10/2018. The sample was received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

### <u>Metals:</u>

No significant anomalies were noted with this analysis.

**Return to Contents** 

Amanda Jull

Approved by

Date 05/24/2018



## SAMPLE DETECTION SUMMARY

| CLIENT ID: DU-1 Composite | Lab ID: K1804396-001 |      |      |      |         |                |  |  |  |  |  |  |  |
|---------------------------|----------------------|------|------|------|---------|----------------|--|--|--|--|--|--|--|
| Analyte                   | Results              | Flag | MDL  | PQL  | Units   | Method         |  |  |  |  |  |  |  |
| Selenium                  | 0.31                 |      | 0.04 | 0.18 | mg/Kg   | 7742           |  |  |  |  |  |  |  |
| Solids, Total             | 46.6                 |      |      |      | Percent | 160.3 Modified |  |  |  |  |  |  |  |

Page 59 of 76



# Sample Receipt Information

Return to Contents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

### SAMPLE CROSS-REFERENCE

| SAMPLE #     | CLIENT SAMPLE ID | DATE     | TIME |
|--------------|------------------|----------|------|
| K1804396-001 | DU-1 Composite   | 5/3/2018 | 0900 |

| \$<br>\$                     | eurofins                                              |                         |          | ALS (        | Kelso)      | )           |           |                |                    | KK                  | D 4      | 139          | 6       |       | 1          | rtt     | /ci       | HAIN       | I OF          | = Cl   | JSTO      | ODY   | ( RE      | coi         | RD       |
|------------------------------|-------------------------------------------------------|-------------------------|----------|--------------|-------------|-------------|-----------|----------------|--------------------|---------------------|----------|--------------|---------|-------|------------|---------|-----------|------------|---------------|--------|-----------|-------|-----------|-------------|----------|
| Ě.                           |                                                       | Calscier                |          | -            | _           |             |           |                | WQ                 | #≁LAB               | USE Of   | VL Y         |         |       |            | DA      | TE:       |            |               | 0      | 5/09/     | /18   |           |             |          |
|                              | ncoin Way, Garden Grove, CA 928                       |                         |          |              |             |             |           |                |                    |                     |          |              |         |       |            | PAC     | €:        |            | 1             |        | 0F        |       | 1         |             |          |
|                              | ier service / sample drop off inform<br>ATORY CLIENT: |                         |          | insus.com or | call us.    |             |           |                | CLIE               | INT PRO             | DJECT N  | NAME / N     | UMBER   |       |            |         |           |            | P.Ö           | NO.:   |           |       | <u> </u>  |             | <b>1</b> |
|                              |                                                       | NS CALSCI               | ENCE     |              |             |             |           |                | 1                  | 8-05                | 5-03     | 53 / \       | WET     | Ά     |            |         |           |            |               |        |           |       |           |             |          |
| ADDRE                        | 7440 LINCOLN                                          | WAY                     |          |              |             |             |           |                | PRC                | JECT C              | ONTAC    | T:           |         |       |            |         |           |            | SAN           | VPLER( | S): (PRIN | ī)    |           |             |          |
| CITY: GARDEN GROVE STATE: CA |                                                       |                         |          |              |             |             |           |                | ] c                | CARLA LEE HOLLOWELL |          |              |         |       |            |         |           |            |               |        |           |       |           |             |          |
| TEL:                         |                                                       | E-MAIL:                 | LAHOLLO  | WELL@E       | UROFIN      | ISUS        | .CON      | N              | REQUESTED ANALYSES |                     |          |              |         |       |            |         |           |            |               |        |           |       |           |             |          |
| TURNA                        | ROUND TIME (Rush surcharges may app                   | bly to any TAT not "STA | NDARD"): |              |             |             |           |                | 1                  |                     |          | Pl           | ease ch | eck b | ox or fill | in blan | k as nee  | eded.      |               |        |           |       |           |             | -        |
| □sA                          |                                                       | 48 HR 🛛 72              | 2 HR 🛛 5 | DAYS I       | STAND       |             |           |                |                    |                     |          |              |         |       |            |         |           |            |               |        |           |       |           |             |          |
|                              |                                                       |                         |          |              |             | LOG         | CODE      |                |                    |                     |          |              |         |       |            |         |           |            |               |        |           |       |           |             | ~        |
| SPECIA                       | LINSTRUCTIONS:                                        | <u></u>                 |          |              |             |             |           |                | 1                  |                     |          |              |         |       |            |         | ł         |            |               |        |           |       |           |             | NUMBER   |
|                              | ndard TAT                                             |                         |          |              |             |             |           |                |                    |                     |          |              |         |       |            |         |           |            |               | 1      |           |       |           |             | ş        |
|                              | ase provide DMMO ED                                   | )D; mg/kg ur            | nits     |              |             |             |           |                | 5                  |                     |          |              |         |       |            |         |           |            |               |        |           |       |           |             |          |
| Dry                          | weight reporting.                                     |                         |          |              |             | ved         | 70        | sred           | Se by 7742         | S                   |          |              |         |       |            |         |           |            |               |        |           |       |           |             | SAMPLE   |
| 1.48                         |                                                       | SAMPL                   | ING      |              | NO.         | Unpreserved | Preserved | Field Filtered | Ā                  | MS/MSD              |          |              |         |       |            |         |           |            | -             |        |           |       |           |             | & ∣      |
| USE<br>ONLY                  | SAMPLE ID                                             | DATE                    | TIME     | MATRIX       | OF<br>CONT. | Unpi        | Pres      | Field          | Se                 | MS                  |          |              |         |       | [          | _       |           |            |               |        |           |       |           |             | Ö        |
|                              | DU-1 Composite                                        | 5/3/2018                | 900      | SED          | 1           | х           |           |                | х                  |                     |          |              |         |       |            |         |           |            |               |        |           |       |           |             | 1        |
|                              |                                                       |                         |          |              |             |             |           |                |                    |                     |          |              |         |       |            | _       |           |            |               |        |           |       |           |             |          |
|                              |                                                       |                         |          |              |             |             |           |                |                    |                     |          |              |         | .     |            |         |           |            |               |        |           |       |           |             |          |
|                              |                                                       |                         | :        |              |             |             |           |                |                    |                     |          |              | ·       |       | :          |         |           |            |               |        |           |       |           |             |          |
|                              |                                                       |                         |          |              |             |             |           |                |                    |                     |          |              | ·       |       |            | _       |           |            |               |        |           |       |           |             |          |
|                              |                                                       |                         |          |              |             |             |           |                |                    |                     |          |              |         |       |            |         |           |            |               |        |           |       |           |             |          |
|                              |                                                       |                         |          |              |             |             |           |                |                    |                     |          |              |         |       |            |         |           |            |               |        |           |       |           |             |          |
|                              |                                                       |                         |          |              |             |             |           |                |                    |                     |          |              |         |       |            |         |           |            |               |        |           |       |           |             |          |
|                              |                                                       |                         |          |              |             |             |           |                |                    |                     |          |              |         |       |            |         |           |            |               |        |           |       |           |             |          |
|                              |                                                       |                         |          |              |             |             |           |                |                    |                     |          |              |         |       |            |         |           | T          |               |        |           |       |           |             | 7        |
| Relin                        | quished by: (Signature)                               | AD /                    | Leits    | h            | Re          | ceiye       | d by      | (Sig           | inatu<br>1772      | re/Af<br>१.९७       | filiatio | on)<br>< 2 < | :92     |       |            |         |           | Da<br>5    | te:<br> q     | 10     |           | Tim   | e:<br>∤≤S |             | ٦        |
| Relinqui                     | shed by, (Signature)                                  |                         | <u></u>  |              | Rece        | ived by     | : (Sign   | ature//        | Affiliatio         |                     |          |              | 769     |       |            |         |           | Date<br>5/ | and the start | 10     |           | Time: |           |             |          |
| Relinqui                     | shed by: (Signature)                                  |                         |          |              | Rece        | ived by     | : (Sign   | ature//        | Atfiliatic         | )n)                 |          |              |         |       |            |         | <u></u> , | Date       |               | U      |           | Time: | ~         | <del></del> |          |

÷

Return to Contents.

|             |             |                                        |                   |                         |                    |             |             |               |                |                                        |           |                                        |                                 | F       | age 62                   | of 76    |
|-------------|-------------|----------------------------------------|-------------------|-------------------------|--------------------|-------------|-------------|---------------|----------------|----------------------------------------|-----------|----------------------------------------|---------------------------------|---------|--------------------------|----------|
| Ċ           | AL.S        | a)                                     |                   |                         |                    |             |             |               |                |                                        |           |                                        |                                 | P       | °C_//                    |          |
|             |             | ~ ^                                    |                   |                         | Cooler             |             |             |               |                |                                        |           |                                        | <i>.</i>                        |         |                          | •        |
| Client      | t_t         | wrotin                                 |                   |                         |                    |             |             | S             | ervice         | e Requ                                 | est KI    | 8_04                                   | 396                             |         |                          |          |
| Recei       | ved: :      | 5/10/18                                | 3                 | Opened:                 | sliplie            | 3           | By          | r. 🛆          | 5              | U                                      | nloade    | ed: 5/1                                | olia                            | By:     | CG                       |          |
|             |             |                                        |                   |                         |                    | _           |             |               |                |                                        |           | `                                      |                                 |         |                          |          |
|             | •           | s were rece                            |                   | USPS (                  | Fed Ex             |             | PS          | DHL           |                | DX<br>out                              | Couri     |                                        | id Delivere                     |         | <b>N</b> 14              |          |
|             | ,           |                                        | ived in: (ci      |                         | ooler \            | Box         | -           | Envelop       |                |                                        |           |                                        |                                 |         | NA                       |          |
|             |             |                                        | s on cooler:      |                         |                    | • •         | N<br>M      |               |                |                                        |           | signed and                             | datad)                          | <b></b> | <br>У                    | N        |
|             | prese       | m, were cu                             | stody seals       |                         | Y                  |             | V<br>       |               | ··· ·· · · · · |                                        |           | signed and                             |                                 |         |                          |          |
| Ra<br>Goote | w<br>r Temp | Corrected.<br>Cooler Temp              | Raw<br>Temp Blank | Corrected<br>Temp Blank | Corr.<br>Factor    | The         | momet<br>ID | er            | Cooler         |                                        | NA        |                                        | Tracking !                      |         | *                        | IA Filed |
| -0.         | 3           | -0.5                                   |                   |                         | -0.2               | 34          | 5/          |               |                |                                        |           | 7721                                   | 9675                            | 35%     | 72                       |          |
|             |             |                                        |                   |                         | ••                 |             |             |               |                | <u></u>                                |           |                                        |                                 |         |                          |          |
|             |             |                                        |                   |                         |                    |             |             |               | ••••••         |                                        |           |                                        | ,u,u,u, <b>-</b>                |         |                          |          |
|             |             |                                        |                   |                         |                    | +           |             |               |                | ······································ |           | ····· ···· ··· ····                    |                                 |         |                          |          |
| 4 F         | <br>Packin  | o material:                            | Inserts           | Baggies                 | Rubble W           | i<br>Vran   | Gel Pa      | cks A         | Vet Ic         | e) Dra                                 | , Ice     | Sleeves                                |                                 |         |                          |          |
|             |             | -                                      |                   | y filled out            |                    |             |             | C             |                |                                        |           |                                        |                                 | NA      | $\overline{\mathcal{O}}$ | N        |
|             |             | -                                      |                   | od conditio             |                    |             |             | n)? <i>In</i> | dicate         | in the                                 | tahle be  | elow.                                  |                                 | NA      | (v)                      | N        |
| v           |             |                                        | +                 | plicable, tis           | •                  |             |             |               | Froz           |                                        |           | y Thawed                               | Thawed                          |         | Š                        |          |
| 7. V        | Vere a      | ll sample la                           | ibels comp        | lete (i.e anal          | ysis, pres         | ervatio     | n, etc.)    | ?             |                |                                        |           |                                        |                                 | NA      | Q                        | Ν        |
| 8. E        | Did all     | sample lab                             | els and tag       | s agree with            | custody p          | papers?     | Indic       | ate maj       | or disc        | crepan                                 | cies in t | the table on                           | page 2.                         | NA      | $(\underline{v})$        | Ν        |
|             |             |                                        |                   | ntainers and            |                    |             |             |               |                |                                        |           |                                        |                                 | NA      | , Ø                      | N        |
| 10.         | Were        | the pH-pre                             | served bot        | tles (see SMC           | ) GEN SOF          | P) recei    | ived at     | the app       | ropria         | te pH?                                 | Indica    | te in the tai                          | ble below                       | NA      | Ý                        | N        |
| 11.         | Were        | VOA vials                              | received v        | vithout head            | space? In          | idicate     | in the l    | table be      | low.           |                                        |           |                                        |                                 | (NA     | Υ<br>Υ                   | N        |
| 12.         | Was (       | C12/Res ne                             | gative?           |                         |                    |             |             |               |                |                                        |           |                                        |                                 |         | Υ Υ                      | N        |
|             |             |                                        |                   |                         |                    | •           |             |               |                |                                        |           |                                        | o<br>Inlaand™in al Ba           |         |                          |          |
|             |             | Sample ID                              | on Bottle         | ··                      | +                  | Samp        | ole ID or   | 1.000         |                |                                        |           |                                        | Identified b                    | y:      |                          |          |
|             |             |                                        |                   | ••••,                   |                    |             |             |               |                |                                        |           |                                        |                                 |         |                          |          |
|             |             |                                        |                   |                         | •                  | - <u></u> - |             |               | - <u></u>      |                                        |           |                                        | ···· , ··· ··· , ··· , ··· , ·· | ·····   |                          |          |
| L           |             | ······································ |                   | ······                  |                    | 1           | τ <u></u>   |               |                | ·····                                  | ·····     | ······································ | ·······                         |         |                          |          |
|             |             | Sample                                 | D                 |                         | e Count<br>le Type |             | Head-       | Broke         | рH             | Re                                     | agent     | Volume<br>added                        | Reagent<br>Numb                 |         | Initials                 | Time     |
|             |             |                                        |                   |                         |                    |             |             |               |                |                                        |           |                                        |                                 |         |                          |          |
|             |             |                                        |                   |                         |                    |             |             |               |                | <u> </u>                               |           |                                        |                                 |         |                          |          |
|             |             |                                        |                   |                         |                    | ļ           | ļ           |               | ·,             |                                        |           |                                        |                                 |         |                          |          |
| <u> </u>    |             |                                        |                   |                         |                    | ļ           | <u> </u>    |               |                | ļ                                      |           |                                        |                                 |         |                          |          |
| <u> </u>    |             |                                        | ·····             |                         |                    | <u> </u>    | <u> </u>    | <b> </b>      |                |                                        |           |                                        | L                               |         |                          |          |
|             |             |                                        |                   | ļ                       |                    | ļ           | 1           | ]             | l              | ł                                      |           | 1                                      |                                 |         |                          |          |

Notes, Discrepancies, & Resolutions:

in the set of the second of the second s

7/25/16

**Return to Contents** 

Page 63 of 76

Ì

Return to Co



# **Miscellaneous Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

**Return to Contents** 

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$   $\,$  The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
   DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                                             | Number      |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                                       | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                                             | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                                      | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                                                  | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                                       | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                                              | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                                            | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                                               | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                                               | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                                           | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                                          | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                                               | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                                           | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                                            | 12060       |
| North Carolina DEQ       | https://deq.nc.gov/about/divisions/water-resources/water-resources-<br>data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-<br>certification | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                                        | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator<br>yAccreditation/Pages/index.aspx                                                         | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                                     | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                                        | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                                       | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                                          | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                                                    | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

## Acronyms

| ASTM       | American Society for Testing and Materials                                                                                                              |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| A2LA       | American Association for Laboratory Accreditation                                                                                                       |
| CARB       | California Air Resources Board                                                                                                                          |
| CAS Number | Chemical Abstract Service registry Number                                                                                                               |
| CFC        | Chlorofluorocarbon                                                                                                                                      |
| CFU        | Colony-Forming Unit                                                                                                                                     |
| DEC        | Department of Environmental Conservation                                                                                                                |
| DEQ        | Department of Environmental Quality                                                                                                                     |
| DHS        | Department of Health Services                                                                                                                           |
| DOE        | Department of Ecology                                                                                                                                   |
| DOH        | Department of Health                                                                                                                                    |
| EPA        | U. S. Environmental Protection Agency                                                                                                                   |
| ELAP       | Environmental Laboratory Accreditation Program                                                                                                          |
| GC         | Gas Chromatography                                                                                                                                      |
| GC/MS      | Gas Chromatography/Mass Spectrometry                                                                                                                    |
| LOD        | Limit of Detection                                                                                                                                      |
| LOQ        | Limit of Quantitation                                                                                                                                   |
| LUFT       | Leaking Underground Fuel Tank                                                                                                                           |
| M<br>MCL   | Modified<br>Maximum Contaminant Level is the highest permissible concentration of a substance<br>allowed in drinking water as established by the USEPA. |
| MDL        | Method Detection Limit                                                                                                                                  |
| MPN        | Most Probable Number                                                                                                                                    |
| MRL        | Method Reporting Limit                                                                                                                                  |
| NA         | Not Applicable                                                                                                                                          |
| NC         | Not Calculated                                                                                                                                          |
| NCASI      | National Council of the Paper Industry for Air and Stream Improvement                                                                                   |
| ND         | Not Detected                                                                                                                                            |
| NIOSH      | National Institute for Occupational Safety and Health                                                                                                   |
| PQL        | Practical Quantitation Limit                                                                                                                            |
| RCRA       | Resource Conservation and Recovery Act                                                                                                                  |
| SIM        | Selected Ion Monitoring                                                                                                                                 |
| TPH<br>tr  | Total Petroleum Hydrocarbons<br>Trace level is the concentration of an analyte that is less than the PQL but greater than or<br>equal to the MDL.       |

Analyst Summary report

| Client:  | Eurofins Calscience Environmental Laboratory | Service Request: K1804396 |
|----------|----------------------------------------------|---------------------------|
| Project: | WETA/18-05-0353                              |                           |

| Sample Name:   | DU-1 Composite |
|----------------|----------------|
| Lab Code:      | K1804396-001   |
| Sample Matrix: | Soil           |

**Date Collected:** 05/3/18 **Date Received:** 05/10/18

| Analysis Method |  |
|-----------------|--|
| 160.3 Modified  |  |
| 7742            |  |

Extracted/Digested By

KLINN

**Analyzed By** DMADDEN JCHAN

Page 68 of 76

t

Return to Co



## Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 69 of 76

Î

Return to Co



## Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

#### ALS Group USA, Corp. dba ALS Environmental

Analytical Report

|                           | F                                            |                                       |
|---------------------------|----------------------------------------------|---------------------------------------|
| Client:                   | Eurofins Calscience Environmental Laboratory | Service Request: K1804396             |
| Project:                  | WETA/18-05-0353                              | <b>Date Collected:</b> 05/03/18 09:00 |
| Sample Matrix:            | Soil                                         | Date Received: 05/10/18 10:00         |
| Sample Name:<br>Lab Code: | DU-1 Composite<br>K1804396-001               | Basis: Dry                            |

#### **Total Metals**

|              | Analysis |        |       |      |      |      |                | Date      |   |
|--------------|----------|--------|-------|------|------|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL  | MDL  | Dil. | Date Analyzed  | Extracted | Q |
| Selenium     | 7742     | 0.31   | mg/Kg | 0.18 | 0.04 | 2    | 05/22/18 12:19 | 05/21/18  |   |

Page 71 of 76



## **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

#### ALS Group USA, Corp. dba ALS Environmental

Analytical Report

| Client:<br>Project:       | Eurofins Calscience Environmental Laboratory<br>WETA/18-05-0353 | Service Request: K1804396<br>Date Collected: 05/03/18 09:00 |
|---------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|
| Sample Matrix:            | Soil                                                            | <b>Date Received:</b> 05/10/18 10:00                        |
| Sample Name:<br>Lab Code: | DU-1 Composite<br>K1804396-001                                  | Basis: As Received                                          |

#### **Inorganic Parameters**

| Analyte Name  | Analysis Method | Result | Units   | MRL | MDL | Dil. | Date Analyzed  | Q |
|---------------|-----------------|--------|---------|-----|-----|------|----------------|---|
| Solids, Total | 160.3 Modified  | 46.6   | Percent | -   | -   | 1    | 05/10/18 16:23 |   |

Page 73 of 76

Î

Return to Co



# QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 74 of 76

Î

Return to Co



## Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

#### ALS Group USA, Corp. dba ALS Environmental

Analytical Report

|                           | f F                                          |                           |
|---------------------------|----------------------------------------------|---------------------------|
| Client:                   | Eurofins Calscience Environmental Laboratory | Service Request: K1804396 |
| Project:                  | WETA/18-05-0353                              | Date Collected: NA        |
| Sample Matrix:            | Soil                                         | Date Received: NA         |
| Sample Name:<br>Lab Code: | Method Blank<br>KQ1806606-01                 | Basis: Dry                |

#### **Total Metals**

|              | Analysis |        |       |      |      |      |                | Date      |   |
|--------------|----------|--------|-------|------|------|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL  | MDL  | Dil. | Date Analyzed  | Extracted | Q |
| Selenium     | 7742     | ND U   | mg/Kg | 0.10 | 0.02 | 2    | 05/22/18 11:46 | 05/21/18  |   |

QA/QC Report

Client:Eurofins Calscience Environmental LaboratoryProject:WETA/18-05-0353Sample Matrix:Soil

Service Request: K1804396 Date Analyzed: 05/22/18

Lab Control Sample Summary Total Metals

> Units:mg/Kg Basis:Dry

Lab Control Sample<br/>KQ1806606-02Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsSelenium77421631918569-132

Printed 5/24/2018 8:19:57 AM

10 Commercial Blvd | Ste 100 | Novato, CA 94949 415.884.8011 | 800.668.3220 | f: 415.366.3388

Appendix C Discrete Chemistry Data Report Submitted by Eurofins | Calscience Supplement



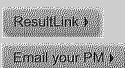
## Calscience

Supplemental Report 1

Additional requested analyses are reported as a stand-alone report.

## WORK ORDER NUMBER: 18-05-0353

### The difference is service




AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: FOTH CLE Engineering Client Project Name: WETA Attention: Wendy Rocha 15 Creek Road Marion, MA 02738-9999



Approved for release on 06/22/2018 by: Carla Hollowell Project Manager



Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 + TEL: (714) 895-5494 + FAX: (714) 894-7501 + www.calscience.com

#### 🛟 eurofins Calscience

## S

|   | Conte                                                                                  | nts                      |
|---|----------------------------------------------------------------------------------------|--------------------------|
|   | Project Name: WETA<br>Order Number: 18-05-0353                                         |                          |
| 1 | Work Order Narrative                                                                   | 3                        |
| 2 | Sample Summary.                                                                        | 4                        |
| 3 | Client Sample Data                                                                     | 5<br>5<br>6              |
| 4 | Quality Control Sample Data.4.1 MS/MSD.4.2 PDS/PDSD.4.3 Sample Duplicate.4.4 LCS/LCSD. | 8<br>8<br>10<br>12<br>13 |
| 5 | Glossary of Terms and Qualifiers.                                                      | 15                       |
| 6 | Chain-of-Custody/Sample Receipt Form                                                   | 16                       |

Work Order: 18-05-0353

Page 1 of 1

#### **Condition Upon Receipt:**

Samples were received under Chain-of-Custody (COC) on 05/04/18. They were assigned to Work Order 18-05-0353.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

#### Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

#### **Quality Control:**

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

#### Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

#### Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

#### **DoD Projects:**

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.



| Client: | FOTH CLE Engineering  | Work Order:              | 18-05-0353     |
|---------|-----------------------|--------------------------|----------------|
|         | 15 Creek Road         | Project Name:            | WETA           |
|         | Marion, MA 02738-9999 | PO Number:               | 0017S414.20    |
|         |                       | Date/Time<br>Received:   | 05/04/18 07:30 |
|         |                       | Number of<br>Containers: | 13             |
| Attn:   | Wendy Rocha           |                          |                |

| Sample Identification | Lab Number   | Collection Date and Time | Number of<br>Containers | Matrix   |
|-----------------------|--------------|--------------------------|-------------------------|----------|
| DU-1 Composite        | 18-05-0353-1 | 05/03/18 09:00           | 4                       | Sediment |
| A-ARCHIVE ONLY        | 18-05-0353-3 | 05/01/18 12:25           | 1                       | Sediment |
| B-ARCHIVE ONLY        | 18-05-0353-5 | 05/01/18 11:15           | 1                       | Sediment |
| C-ARCHIVE ONLY        | 18-05-0353-7 | 05/01/18 13:30           | 1                       | Sediment |
| D-ARCHIVE ONLY        | 18-05-0353-9 | 05/02/18 13:30           | 1                       | Sediment |

Return to Contents



| FOTH CLE Engineering  |                      |                        | Date Recei  | ved:       |                  |                       | 05/04/18      |
|-----------------------|----------------------|------------------------|-------------|------------|------------------|-----------------------|---------------|
| 15 Creek Road         |                      |                        | Work Order  |            |                  |                       | 18-05-0353    |
| Marion, MA 02738-9999 |                      |                        | Preparation | 1:         |                  |                       | N/A           |
|                       |                      |                        | Method:     |            |                  | Ś                     | SM 2540 B (M) |
|                       |                      |                        | Units:      |            |                  |                       | %             |
| Project: WETA         |                      |                        |             |            |                  | Pa                    | age 1 of 1    |
| Client Sample Number  | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID   |
| DU-1 Composite        | 18-05-0353-1-AA      | 05/03/18<br>09:00      | Sediment    | N/A        | 06/14/18         | 06/14/18<br>14:30     | 10614TSB1     |
| Parameter             |                      | Result                 | RL          |            | DF               | Qu                    | alifiers      |
| Solids, Total         |                      | 44.5                   | 0.1         | 00         | 1.00             |                       |               |
| A-ARCHIVE ONLY        | 18-05-0353-3-AA      | 05/01/18<br>12:25      | Sediment    | N/A        | 06/14/18         | 06/14/18<br>14:30     | 10614TSB1     |
| Parameter             |                      | Result                 | RL          |            | DF               | Qu                    | alifiers      |
| Solids, Total         |                      | 45.0                   | 0.1         | 00         | 1.00             |                       |               |
| B-ARCHIVE ONLY        | 18-05-0353-5-AA      | 05/01/18<br>11:15      | Sediment    | N/A        | 06/14/18         | 06/14/18<br>14:30     | 10614TSB1     |
| Parameter             |                      | Result                 | RL          | -          | DF               | <u>Qu</u>             | alifiers      |
| Solids, Total         |                      | 52.3                   | 0.1         | 00         | 1.00             |                       |               |
| C-ARCHIVE ONLY        | 18-05-0353-7-AA      | 05/01/18<br>13:30      | Sediment    | N/A        | 06/14/18         | 06/14/18<br>14:30     | 10614TSB1     |
| Parameter             |                      | Result                 | RL          |            | DE               | Qu                    | alifiers      |
| Solids, Total         |                      | 49.3                   | 0.1         | 00         | 1.00             |                       |               |
| D-ARCHIVE ONLY        | 18-05-0353-9-AA      | 05/02/18<br>13:30      | Sediment    | N/A        | 06/14/18         | 06/14/18<br>14:30     | 10614TSB1     |
| Parameter             |                      | Result                 | RL          |            | DF               | Qu                    | alifiers      |
| Solids, Total         |                      | 40.9                   | 0.1         | 00         | 1.00             |                       |               |
| Method Blank          | 099-05-019-4083      | N/A                    | Solid       | N/A        | 06/14/18         | 06/14/18<br>14:30     | 10614TSB1     |
| Parameter             |                      | Result                 | RL          |            | DF               | Qu                    | alifiers      |
| Solids, Total         |                      | ND                     | 0.1         | 00         | 1.00             |                       |               |



| FOTH CLE E           | ngineering                  |                      |                        | Date Recei  | ved:       |                  |                       | 05/04/18    |
|----------------------|-----------------------------|----------------------|------------------------|-------------|------------|------------------|-----------------------|-------------|
| 15 Creek Roa         | d                           |                      |                        | Work Order  |            |                  |                       | 18-05-0353  |
| Marion, MA 02        | 2738-9999                   |                      |                        | Preparation | :          |                  |                       | EPA 3050E   |
|                      |                             |                      |                        | Method:     |            |                  |                       | EPA 6020    |
|                      |                             |                      |                        | Units:      |            |                  |                       | mg/kg       |
| Project: WET         | A                           |                      |                        |             | age 1 of 2 |                  |                       |             |
| Client Sample Nu     | umber                       | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| DU-1 Composite       | )                           | 18-05-0353-1-CC      | 05/03/18<br>09:00      | Sediment    | ICP/MS 03  | 05/07/18         | 05/09/18<br>18:57     | 180507L01E  |
| Comment(s):          | - Results are reported on a | dry weight basis.    |                        |             |            |                  |                       |             |
| Parameter            |                             |                      | <u>Result</u>          | <u>RL</u>   |            | DF               | Qua                   | alifiers    |
| Arsenic              |                             |                      | 13.6                   | 0.2         | 25         | 1.00             |                       |             |
| Cadmium              |                             |                      | 0.885                  | 0.2         | 25         | 1.00             |                       |             |
| Chromium             |                             |                      | 100                    | 0.2         | 25         | 1.00             |                       |             |
| Copper               |                             |                      | 67.3                   | 0.2         | 25         | 1.00             |                       |             |
| Lead                 |                             |                      | 26.9                   | 0.2         | 25         | 1.00             |                       |             |
| Nickel               |                             |                      | 105                    | 0.2         | 25         | 1.00             |                       |             |
| Silver               |                             |                      | 0.354                  | 0.2         | 25         | 1.00             |                       |             |
| Zinc                 |                             |                      | 143                    | 2.2         | 5          | 1.00             |                       |             |
| DU-1 Composite       | )                           | 18-05-0353-1-AA      | 05/03/18<br>09:00      | Sediment    | ICP/MS 05  | 06/08/18         | 06/14/18<br>22:38     | 180608L01   |
| Comment(s):          | - Results are reported on a | dry weight basis.    |                        |             |            |                  |                       |             |
| Parameter            |                             |                      | <u>Result</u>          | <u>RL</u>   |            | DF               | Qua                   | alifiers    |
| Cadmium              |                             |                      | 1.40                   | 0.2         | 25         | 1.00             |                       |             |
| A-ARCHIVE ONI        | LY                          | 18-05-0353-3-AA      | 05/01/18<br>12:25      | Sediment    | ICP/MS 05  | 06/08/18         | 06/14/18<br>22:42     | 180608L01   |
| Comment(s):          | - Results are reported on a | dry weight basis.    |                        |             |            |                  |                       |             |
| Parameter            |                             |                      | <u>Result</u>          | <u>RL</u>   |            | DF               | Qua                   | alifiers    |
| Cadmium              |                             |                      | 1.07                   | 0.2         | 22         | 1.00             |                       |             |
| <b>B-ARCHIVE ONI</b> | LY                          | 18-05-0353-5-AA      | 05/01/18<br>11:15      | Sediment    | ICP/MS 05  | 06/08/18         | 06/14/18<br>22:46     | 180608L01   |
| Comment(s):          | - Results are reported on a | dry weight basis.    |                        |             |            |                  |                       |             |
| Parameter            |                             |                      | <u>Result</u>          | <u>RL</u>   |            | DF               | Qua                   | alifiers    |
| Cadmium              |                             |                      | 1.35                   | 0.1         |            | 1.00             |                       |             |
| C-ARCHIVE ONI        | LY                          | 18-05-0353-7-AA      | 05/01/18<br>13:30      | Sediment    | ICP/MS 05  | 06/08/18         | 06/14/18<br>22:49     | 180608L01   |
| Comment(s):          | - Results are reported on a | dry weight basis.    |                        |             |            |                  | -                     |             |
| Parameter            | •                           | -                    | <u>Result</u>          | <u>RL</u>   |            | DF               | Qua                   | alifiers    |
| Cadmium              |                             |                      | 0.975                  | 0.2         |            | 1.00             |                       |             |
|                      |                             |                      |                        | 0.2         | '          |                  |                       |             |
|                      |                             |                      |                        |             |            |                  |                       |             |



| FOTH CLE Engineering               |                        |                        | Date Rece  | ived:      |                  |                       | 05/04/18    |
|------------------------------------|------------------------|------------------------|------------|------------|------------------|-----------------------|-------------|
| 15 Creek Road                      |                        |                        | Work Orde  | er:        |                  |                       | 18-05-0353  |
| Marion, MA 02738-9999              |                        |                        | Preparatio | n:         |                  |                       | EPA 3050E   |
|                                    |                        |                        | Method:    |            |                  |                       | EPA 6020    |
|                                    |                        |                        | Units:     |            |                  |                       | mg/kg       |
| Project: WETA                      |                        |                        |            |            |                  | Pa                    | age 2 of 2  |
| Client Sample Number               | Lab Sample<br>Number   | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| D-ARCHIVE ONLY                     | 18-05-0353-9-AA        | 05/02/18<br>13:30      | Sediment   | ICP/MS 05  | 06/08/18         | 06/14/18<br>22:35     | 180608L01   |
| Comment(s): - Results are reported | on a dry weight basis. |                        |            |            |                  |                       |             |
| Parameter                          |                        | Result                 | <u>R</u>   | L          | DF               | Qua                   | alifiers    |
| Cadmium                            |                        | 1.18                   | 0.         | 244        | 1.00             |                       |             |
| Method Blank                       | 099-15-254-604         | N/A                    | Solid      | ICP/MS 03  | 05/07/18         | 05/09/18<br>18:42     | 180507L01E  |
| Parameter                          |                        | Result                 | R          |            | DF               | Qua                   | alifiers    |
| Arsenic                            |                        | ND                     | 0.         | 100        | 1.00             |                       |             |
| Cadmium                            |                        | ND                     | 0.         | 100        | 1.00             |                       |             |
| Chromium                           |                        | ND                     | 0.         | 100        | 1.00             |                       |             |
| Copper                             |                        | ND                     | 0.         | 100        | 1.00             |                       |             |
| Lead                               |                        | ND                     | 0.         | 100        | 1.00             |                       |             |
| Nickel                             |                        | ND                     | 0.         | 100        | 1.00             |                       |             |
| Silver                             |                        | ND                     | 0.         | 100        | 1.00             |                       |             |
| Zinc                               |                        | ND                     | 1.         | 00         | 1.00             |                       |             |
| Method Blank                       | 099-15-254-614         | N/A                    | Solid      | ICP/MS 05  | 06/08/18         | 06/14/18<br>22:02     | 180608L01   |
| Parameter                          |                        | Result                 | <u>R</u>   | _          | DF               | Qua                   | alifiers    |
| Cadmium                            |                        | ND                     | 0          | 100        | 1.00             |                       |             |



| FOTH CLE Engineering  | Date Received: | 05/04/18    |
|-----------------------|----------------|-------------|
| 15 Creek Road         | Work Order:    | 18-05-0353  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3050B   |
|                       | Method:        | EPA 6020    |
| Project: WETA         |                | Page 1 of 2 |

| Quality Control Sample ID | Туре                   |                              | Matrix             | Ins                       | strument            | Date Prepared       | Date Ana        | lyzed      | MS/MSD Ba     | tch Number        |
|---------------------------|------------------------|------------------------------|--------------------|---------------------------|---------------------|---------------------|-----------------|------------|---------------|-------------------|
| DU-1 Composite            | Sample                 |                              | Sedime             | ent ICF                   | P/MS 03             | 05/07/18            | 05/09/18        | 18:57      | 180507S01     |                   |
| DU-1 Composite            | Matrix Spike           |                              | Sedime             | ent ICF                   | P/MS 03             | 05/07/18            | 05/09/18        | 18:47      | 180507S01     |                   |
| DU-1 Composite            | Matrix Spike           | Duplicate                    | Sedime             | ent ICF                   | P/MS 03             | 05/07/18            | 05/09/18        | 18:49      | 180507S01     |                   |
| Parameter                 | <u>Sample</u><br>Conc. | <u>Spike</u><br><u>Added</u> | <u>MS</u><br>Conc. | <u>MS</u><br><u>%Rec.</u> | <u>MSD</u><br>Conc. | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u> | <u>RPD</u> | <u>RPD CL</u> | <u>Qualifiers</u> |
| Arsenic                   | 6.073                  | 25.00                        | 32.97              | 108                       | 33.92               | 111                 | 80-120          | 3          | 0-20          |                   |
| Cadmium                   | 0.3938                 | 25.00                        | 28.16              | 111                       | 29.05               | 115                 | 80-120          | 3          | 0-20          |                   |
| Chromium                  | 44.48                  | 25.00                        | 76.58              | 128                       | 77.76               | 133                 | 80-120          | 2          | 0-20          | 3                 |
| Copper                    | 29.94                  | 25.00                        | 59.20              | 117                       | 59.67               | 119                 | 80-120          | 1          | 0-20          |                   |
| Lead                      | 11.96                  | 25.00                        | 41.35              | 118                       | 41.62               | 119                 | 80-120          | 1          | 0-20          |                   |
| Nickel                    | 46.91                  | 25.00                        | 79.60              | 131                       | 79.15               | 129                 | 80-120          | 1          | 0-20          | 3                 |
| Silver                    | 0.1576                 | 12.50                        | 13.33              | 105                       | 13.80               | 109                 | 80-120          | 3          | 0-20          |                   |
| Zinc                      | 63.64                  | 25.00                        | 97.86              | 137                       | 100.5               | 147                 | 80-120          | 3          | 0-20          | 3                 |



| FOTH CLE Engineering      |                               |                       |                    | Da               | te Received                   | d:                  |                 |            |               | 05/04/18          |
|---------------------------|-------------------------------|-----------------------|--------------------|------------------|-------------------------------|---------------------|-----------------|------------|---------------|-------------------|
| 15 Creek Road             |                               |                       |                    | Wo               | ork Order:                    |                     |                 |            | 18            | 3-05-0353         |
| Marion, MA 02738-9999     |                               |                       |                    | Pre              | eparation:                    |                     |                 |            | E             | PA 3050B          |
|                           |                               |                       |                    | Me               | ethod:                        |                     |                 |            |               | EPA 6020          |
| Project: WETA             |                               |                       |                    |                  |                               |                     |                 |            | Page 2        | of 2              |
| Quality Control Sample ID | Туре                          |                       | Matrix             |                  | Instrument                    | Date Prepared       | Date Ana        | lyzed      | MS/MSD Bat    | ch Number         |
| D-ARCHIVE ONLY            | Sample                        |                       | Sedime             | nt               | ICP/MS 05                     | 06/08/18            | 06/14/18        | 22:35      | 180608S01     |                   |
| D-ARCHIVE ONLY            | Matrix Spike                  |                       | Sedime             | nt               | ICP/MS 05                     | 06/08/18            | 06/14/18        | 22:20      | 180608S01     |                   |
| D-ARCHIVE ONLY            | Matrix Spike                  | Duplicate             | Sedime             | nt               | ICP/MS 05                     | 06/08/18            | 06/14/18        | 22:24      | 180608S01     |                   |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Re | <u>MSD</u><br>c. <u>Conc.</u> | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u> | <u>RPD</u> | <u>RPD CL</u> | <u>Qualifiers</u> |
| Cadmium                   | 0.4842                        | 0.02500               | 26.94              | 4X               | 27.37                         | 4X                  | 80-120          | 4X         | 0-20          | Q                 |

RPD: Relative Percent Difference. CL: Control Limits



| FOTH CLE Engineering  | Date Received: | 05/04/18    |
|-----------------------|----------------|-------------|
| 15 Creek Road         | Work Order:    | 18-05-0353  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3050B   |
|                       | Method:        | EPA 6020    |
| Project: WETA         |                | Page 1 of 2 |

| Quality Control Sample ID | Туре   | I            | Matrix      | Instrument | Date Prepared Dat  |                 | S/PDSD Batch<br>mber |
|---------------------------|--------|--------------|-------------|------------|--------------------|-----------------|----------------------|
| DU-1 Composite            | Sample | :            | Sediment    | ICP/MS 03  | 05/07/18 00:00 05/ | 09/18 18:57 180 | 0507S01              |
| DU-1 Composite            | PDS    | :            | Sediment    | ICP/MS 03  | 05/07/18 00:00 05/ | 09/18 18:52 180 | 0507S01              |
| Parameter                 |        | Sample Conc. | Spike Addeo | d PDS Conc | . PDS %Rec.        | <u>%Rec. CL</u> | <u>Qualifiers</u>    |
| Arsenic                   |        | 6.073        | 25.00       | 31.67      | 102                | 75-125          |                      |
| Cadmium                   |        | 0.3938       | 25.00       | 27.09      | 107                | 75-125          |                      |
| Chromium                  |        | 44.48        | 25.00       | 70.16      | 103                | 75-125          |                      |
| Copper                    |        | 29.94        | 25.00       | 56.42      | 106                | 75-125          |                      |
| Lead                      |        | 11.96        | 25.00       | 38.33      | 105                | 75-125          |                      |
| Nickel                    |        | 46.91        | 25.00       | 73.93      | 108                | 75-125          |                      |
| Silver                    |        | 0.1576       | 12.50       | 13.12      | 104                | 75-125          |                      |
| Zinc                      |        | 63.64        | 25.00       | 92.29      | 115                | 75-125          |                      |

Page 10 of 18



| FOTH CLE Engineering      |        |              | Da         | ate Received: |                   |                    | 05/04/18                 |
|---------------------------|--------|--------------|------------|---------------|-------------------|--------------------|--------------------------|
| 15 Creek Road             |        |              | W          | ork Order:    |                   |                    | 18-05-0353               |
| Marion, MA 02738-9999     |        |              | Pr         | eparation:    |                   |                    | EPA 3050B                |
|                           |        |              | M          | ethod:        |                   |                    | EPA 6020                 |
| Project: WETA             |        |              |            |               |                   |                    | Page 2 of 2              |
| Quality Control Sample ID | Туре   |              | Matrix     | Instrument    | Date Prepared     | Date Analyzed      | PDS/PDSD Batch<br>Number |
| D-ARCHIVE ONLY            | Sample |              | Sediment   | ICP/MS 05     | 06/08/18 00:00    | 06/14/18 22:35     | 180608S01                |
| D-ARCHIVE ONLY            | PDS    |              | Sediment   | ICP/MS 05     | 06/18/18 00:00    | 06/20/18 11:07     | 180608S01                |
| Parameter                 |        | Sample Conc. | Spike Adde | ed PDS Conc   | . <u>PDS %R</u> e | ec. <u>%Rec. (</u> | CL Qualifiers            |
| Cadmium                   |        | 0.4842       | 25.00      | 25.88         | 102               | 75-125             |                          |

RPD: Relative Percent Difference. CL: Control Limits



| FOTH CLE Engineering      |                  |              | Date Received | l:             |                | 05/04/18               |
|---------------------------|------------------|--------------|---------------|----------------|----------------|------------------------|
| 15 Creek Road             |                  |              | Work Order:   |                |                | 18-05-0353             |
| Marion, MA 02738-9999     |                  |              | Preparation:  |                |                | N/A                    |
|                           |                  |              | Method:       |                |                | SM 2540 B (M)          |
| Project: WETA             |                  |              |               |                |                | Page 1 of 1            |
| Quality Control Sample ID | Туре             | Matrix       | Instrument    | Date Prepared  | Date Analyzed  | Duplicate Batch Number |
| DU-1 Composite            | Sample           | Sediment     | N/A           | 06/14/18 00:00 | 06/14/18 14:30 | 10614TSD1              |
| DU-1 Composite            | Sample Duplicate | Sediment     | N/A           | 06/14/18 00:00 | 06/14/18 14:30 | 10614TSD1              |
| Parameter                 |                  | Sample Conc. | DUP Conc.     | <u>RPD</u>     | RPD CL         | Qualifiers             |
| Solids, Total             |                  | 44.50        | 44.70         | 0              | 0-10           |                        |

RPD: Relative Percent Difference. CL: Control Limits



#### **Quality Control - LCS**

| FOTH CLE Engineering  | Date Received: | 05/04/18    |
|-----------------------|----------------|-------------|
| 15 Creek Road         | Work Order:    | 18-05-0353  |
| Marion, MA 02738-9999 | Preparation:   | EPA 3050B   |
|                       | Method:        | EPA 6020    |
| Project: WETA         |                | Page 1 of 2 |

| Quality Control Sample ID | Туре | Matrix      | Instrument   | Date Prepared | Date Analyzed    | LCS Batch Number |
|---------------------------|------|-------------|--------------|---------------|------------------|------------------|
| 099-15-254-604            | LCS  | Solid       | ICP/MS 03    | 05/07/18      | 05/09/18 18:44   | 180507L01E       |
| <u>Parameter</u>          |      | Spike Added | Conc. Recove | ered LCS %Re  | <u>ec. %Rec.</u> | CL Qualifiers    |
| Arsenic                   |      | 25.00       | 26.67        | 107           | 80-120           | )                |
| Cadmium                   |      | 25.00       | 27.09        | 108           | 80-120           | )                |
| Chromium                  |      | 25.00       | 27.22        | 109           | 80-120           | )                |
| Copper                    |      | 25.00       | 26.96        | 108           | 80-120           | )                |
| Lead                      |      | 25.00       | 27.25        | 109           | 80-120           | )                |
| Nickel                    |      | 25.00       | 26.54        | 106           | 80-120           | )                |
| Silver                    |      | 12.50       | 13.06        | 105           | 80-120           | )                |
| Zinc                      |      | 25.00       | 29.04        | 116           | 80-120           | )                |

RPD: Relative Percent Difference. CL: Control Limits





| FOTH CLE Engineering      |      |             | Date Receiv | /ed:          |                | 05/04/18         |
|---------------------------|------|-------------|-------------|---------------|----------------|------------------|
| 15 Creek Road             |      |             | Work Order  | :             |                | 18-05-0353       |
| Marion, MA 02738-9999     |      |             | Preparation | :             |                | EPA 3050B        |
|                           |      |             | Method:     |               |                | EPA 6020         |
| Project: WETA             |      |             |             |               |                | Page 2 of 2      |
| Quality Control Sample ID | Туре | Matrix      | Instrument  | Date Prepared | Date Analyzed  | LCS Batch Number |
| 099-15-254-614            | LCS  | Solid       | ICP/MS 05   | 06/08/18      | 06/14/18 22:06 | 180608L01        |
| Parameter                 |      | Spike Added | Conc. Recov | rered LCS %Re | ec. %Rec       | . CL Qualifiers  |

27.14

109

80-120

25.00

Return to Contents

RPD: Relative Percent Difference. CL: Control Limits



#### Calscience

#### Work Order: 18-05-0353

**Glossary of Terms and Qualifiers** 

| Work Order:       | : 18-05-0353                                                                                                                                                                                                                                                                                                                                     | Page 1 of 1                                     |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| <u>Qualifiers</u> | Definition                                                                                                                                                                                                                                                                                                                                       |                                                 |
| *                 | See applicable analysis comment.                                                                                                                                                                                                                                                                                                                 |                                                 |
| <                 | Less than the indicated value.                                                                                                                                                                                                                                                                                                                   |                                                 |
| >                 | Greater than the indicated value.                                                                                                                                                                                                                                                                                                                |                                                 |
| 1                 | Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data wa<br>clarification.                                                                                                                                                                                                                | as reported without further                     |
| 2                 | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogi in control and, therefore, the sample data was reported without further clarification.                                                                                                                                            | ate spike compound was                          |
| 3                 | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected<br>associated LCS recovery was in control.                                                                                                                                                                                        | d matrix interference. The                      |
| 4                 | The MS/MSD RPD was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                                          |                                                 |
| 5                 | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix in                                                                                                                                                                                                                                     | terference.                                     |
| 6                 | Surrogate recovery below the acceptance limit.                                                                                                                                                                                                                                                                                                   |                                                 |
| 7                 | Surrogate recovery above the acceptance limit.                                                                                                                                                                                                                                                                                                   |                                                 |
| В                 | Analyte was present in the associated method blank.                                                                                                                                                                                                                                                                                              |                                                 |
| BU                | Sample analyzed after holding time expired.                                                                                                                                                                                                                                                                                                      |                                                 |
| BV                | Sample received after holding time expired.                                                                                                                                                                                                                                                                                                      |                                                 |
| CI                | See case narrative.                                                                                                                                                                                                                                                                                                                              |                                                 |
| Е                 | Concentration exceeds the calibration range.                                                                                                                                                                                                                                                                                                     |                                                 |
| ET                | Sample was extracted past end of recommended max. holding time.                                                                                                                                                                                                                                                                                  | 1                                               |
| HD                | The chromatographic pattern was inconsistent with the profile of the reference fuel standard.                                                                                                                                                                                                                                                    |                                                 |
| HDH               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but h were also present (or detected).                                                                                                                                                                                                  | neavier hydrocarbons                            |
| HDL               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but I also present (or detected).                                                                                                                                                                                                       | ighter hydrocarbons were                        |
| J                 | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. estimated.                                                                                                                                                                                                                    | Reported value is                               |
| JA                | Analyte positively identified but quantitation is an estimate.                                                                                                                                                                                                                                                                                   |                                                 |
| ME                | LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).                                                                                                                                                                                                                                         |                                                 |
| ND                | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                                                                                                                         |                                                 |
| Q                 | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exce concentration by a factor of four or greater.                                                                                                                                                                                   | eding the spike                                 |
| SG                | The sample extract was subjected to Silica Gel treatment prior to analysis.                                                                                                                                                                                                                                                                      |                                                 |
| Х                 | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                                                                                                              |                                                 |
| Z                 | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                                                                                                           |                                                 |
|                   | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture reported on a wet weight basis.                                                                                                                                                                                            | re. All QC results are                          |
|                   | Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding t<br>(40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being re<br>stated holding time unless received at the laboratory within 15 minutes of the collection time. | ime of <= 15 minutes<br>received outside of the |
|                   |                                                                                                                                                                                                                                                                                                                                                  |                                                 |

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

| •    |          |                                       |                | · · · |
|------|----------|---------------------------------------|----------------|-------|
| ÷.,  |          |                                       |                | ٠.    |
|      |          | - 5-                                  |                |       |
|      | 1.064    | ***                                   | ** * ***       |       |
|      |          |                                       | 1.11           | - 2   |
|      | ÷ `• .   |                                       | Te             | ٠.    |
| • •  | - 1 L    | 1.1                                   | · • •          |       |
|      | 15.3     | - L.                                  |                |       |
|      | - d      | Г <i>ш</i> Р                          | ÷.             | ۰.    |
|      |          | J                                     |                | ۰.    |
| ÷.,  | 112      | ÷                                     |                | ۰.    |
| ۰.   |          | Ċ                                     | ×              | ·· .  |
| ·    |          | Ϋ́                                    | - N - N        |       |
| ÷.,? |          |                                       | - 1 <b>n</b> a |       |
|      |          |                                       | · · ·          |       |
|      | ar 's    | 1001                                  | <b>.</b>       |       |
|      |          |                                       |                | ÷.,   |
| ÷.,  | ε.       | ,.:···                                | ч°ч.           |       |
| ч.   |          | -                                     | 1. 194         |       |
| 2.5  |          | 67.255<br>(1923)                      |                | ÷.,   |
| 14   | - N. C   |                                       |                | . · · |
| 5.2  |          | _                                     |                |       |
| . 0  | · · 4    |                                       |                | 23    |
|      |          | -444                                  | •              | . 7   |
|      | 1.11     | Š.,                                   |                | ٠.    |
| . ÷. |          |                                       |                |       |
| 1.4  |          |                                       |                | •••   |
| ·    | 11.4     |                                       | - · -          | ۰.    |
|      | 1.1      | 100                                   | е.             | ۰.    |
|      |          |                                       | ×.             | . '   |
| - 11 |          | C.W.D.                                |                |       |
|      |          |                                       |                | . · · |
| ÷.,  |          | 1                                     | . <b>1</b>     | ÷.,   |
| ۰    |          | .1                                    |                | ۰.    |
| ÷.,  | 6. ľ     | 442                                   | × .            | ۰.    |
| ÷.,  | - C.     |                                       | - C            |       |
|      |          | 1.11                                  |                | ۰.    |
|      | . 6      |                                       |                |       |
| 100  |          | * <u>4</u>                            | ₹              | 1     |
| - 1  | 磁子       | NT.                                   | 80             | ٠.    |
| 2.2  |          | · · · · · · · · · · · · · · · · · · · | . <b>.</b> .   | ъ.    |
| 12.5 | <b>.</b> | - 61                                  | а.<br>С. 1816  | •     |
| - 14 | -        | ۰.<br>۲                               | تەر            | 11    |
|      |          |                                       |                |       |

|                                                          |                          |                                      | ~~~                           | 122 100                                   |                                | 1000 <b>#</b> 1000.000                   |                         | 05/03/12                                            | C                                |
|----------------------------------------------------------|--------------------------|--------------------------------------|-------------------------------|-------------------------------------------|--------------------------------|------------------------------------------|-------------------------|-----------------------------------------------------|----------------------------------|
|                                                          |                          |                                      |                               |                                           |                                |                                          | DATE:                   | 고막                                                  | O                                |
| ö                                                        | call us                  |                                      |                               |                                           |                                |                                          | PAGE:                   | <b>₩</b>                                            |                                  |
| LABORATORY CLIENT<br>Foth and Van Dyke & Associates Inc. |                          |                                      | CLIENT PRO                    | JECT NAME / NUMBER                        | MBER:                          |                                          |                         | P.0.NO<br>0017S4                                    | P.0 NO<br>0017S414.20            |
|                                                          |                          |                                      | PROJECT CONTACT               | ONTACT                                    |                                |                                          |                         | SAME                                                | SAMPLER(S). (PRI)                |
| STATE                                                    | CA <sup>ZIP-</sup> 94949 | a                                    | Wendy Rocha                   | locha                                     |                                |                                          |                         | Uarren<br>Gewan<br>Tennvs                           | ⊔апеп<br>Gewant/Mark<br>Tennvson |
| wendy.rocha@foth.com                                     | Ū                        |                                      |                               |                                           | REQUESTED                      |                                          | ANALYSES                |                                                     |                                  |
| 🗆 5 DAYS                                                 | E STANDARD               |                                      |                               | Please ch                                 | check box or fill in blank     |                                          | as needed.              |                                                     | OD.                              |
|                                                          | 90 <b>7</b>              | LOG CODE                             |                               | (40906                                    |                                | VIS DOLZ                                 |                         |                                                     | IE' 324                          |
|                                                          | Devi                     |                                      | (Ar747A93)<br>(Ar808A93) JJ 9 | Ranic Carbon (EPA I<br>anic Carbon (EPA I | (EPA 7742)<br>Urans (EPA 1613) | (S (SM 2540 B)<br>(S) abixord Epoxida (S | 8) esticides (8270C SIM | 270 of <u>8270CSIM)</u><br>is (EPA 6010 of <u>6</u> | 1464 Particle Size               |
|                                                          | - NO                     | NIJ P<br>SGLAG                       |                               |                                           |                                |                                          |                         |                                                     |                                  |
| MAIKIX                                                   | CONT.                    |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| SOIL                                                     | 4 X                      |                                      |                               |                                           |                                | L<br>L                                   | <b>.</b>                |                                                     | 1                                |
| SOIL                                                     | X                        |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| soil                                                     |                          |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| SOIL                                                     | X                        |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| SOIL                                                     | 1 X                      |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| SOIL                                                     |                          |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| SOIL                                                     |                          |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| soil.                                                    | X                        |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| SOIL                                                     | 1 X                      |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| SOIL                                                     | 1 X                      |                                      |                               |                                           |                                |                                          |                         |                                                     |                                  |
| 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                  | Received by              | y: (Signature/Affiliation            | (ffiliation)                  |                                           |                                |                                          |                         | Date:<br>5/3/2013                                   | Time.                            |
|                                                          | Received b               | Received by (Signature/Afflication)  | Vffiliation)                  | Woha                                      |                                | 13                                       |                         | 54 (§                                               | Time<br>OPSU                     |
|                                                          | Received b               | Received by: (Signature/Affiliation) | (ffil(ation)                  |                                           |                                |                                          |                         | Date 1                                              | Time.                            |



| 🔅 eurofins                                                                                                                                                                                                                          |                                                                                                                            | WORK ORDE                                                                               | R NUMBEI                                       | r: <u>18<sup>Pa</sup></u>              | <b>05</b> 18 M                              | <u>1953</u>          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|---------------------------------------------|----------------------|
| Calscience                                                                                                                                                                                                                          | SAMPLE RECEIPT                                                                                                             | CHECKLIST                                                                               | (                                              | COOLER                                 | <u>، ۱</u> (                                | )F <u>\</u>          |
| CLIENT: FORH + VAL DYVE                                                                                                                                                                                                             | + Associanes                                                                                                               |                                                                                         | DAT                                            | 'е: <u>05</u>                          | <u>104 1</u>                                | <u>2018</u>          |
| TEMPERATURE: (Criteria: 0.0°C - 6.<br>Thermometer ID: SC6 (CF: +0.1°C); T<br>□ Sample(s) outside temperature of<br>□ Sample(s) outside temperature of<br>□ Sample(s) received at ambient tem<br>Ambient Temperature: □ Air □ Filter | emperature (w/o CF):<br>criteria (PM/APM contacted b<br>criteria but received on ice/ch<br>perature; placed on ice for tra |                                                                                         |                                                |                                        | ık ⊡ t<br>ed by: <sup>∠</sup>               | Sample.              |
|                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                         |                                                |                                        |                                             |                      |
| CUSTODY SEAL:<br>Cooler                                                                                                                                                                                                             | Present but Not Intact Present but Not Intact                                                                              | ☑ Not Present<br>☑ Not Present                                                          | □ N/A<br>□ N/A                                 | Check<br>Check                         | ed by:<br>ed by:                            | 426<br>476           |
| SAMPLE CONDITION:<br>Chain-of-Custody (COC) document(s)<br>COC document(s) received complete<br>Sampling date Sampling tim<br>No analysis requested Not re<br>Sampler's name indicated on COC                                       | e □ Matrix □ Number of c<br>elinquished □ No relinquish                                                                    |                                                                                         |                                                | Yes<br>E                               | No<br>C                                     | N/A<br>D<br>D        |
| Sample container label(s) consistent v<br>Sample container(s) intact and in good<br>Proper containers for analyses reques<br>Sufficient volume/mass for analyses re                                                                 | d condition                                                                                                                |                                                                                         | ******                                         | . 0<br>0<br>0                          |                                             |                      |
| Samples received within holding time<br>Aqueous samples for certain analy<br>pH I Residual Chlorine I Di:<br>Proper preservation chemical(s) notec<br>Unpreserved aqueous sample(s) re                                              | ssolved Sulfide Dissolved                                                                                                  | l Oxygen                                                                                |                                                |                                        |                                             | D<br>D<br>D          |
| <ul> <li>□ Volatile Organics</li> <li>□ Total Meta</li> <li>Acid/base preserved samples - pH wit</li> <li>Container(s) for certain analysis free c</li> <li>□ Volatile Organics</li> <li>□ Dissolved</li> </ul>                     | Is Dissolved Metals<br>hin acceptable range<br>f headspace.                                                                |                                                                                         |                                                |                                        |                                             | র্ব্র                |
| □ Carbon Dioxide (SM 4500) □ F<br>Tedlar™ bag(s) free of condensation                                                                                                                                                               | errous Iron (SM 3500) DH                                                                                                   |                                                                                         | ich)                                           | 🗆                                      | ۵                                           | 6                    |
| CONTAINER TYPE:<br>Aqueous: □ VOA □ VOAh □ VOAna₂ □<br>□ 250AGB □ 250CGB □ 250CGBs (pH_<br>□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2)<br>Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ<br>Air: □ Tedlar™ □ Canister □ Sorbent Tu                          | _2) □ 250PB □ 250PBn (pH<br>□ 1AGBs (O&G) □ 1PB □ 1PBn<br>□ Sleeve () □ EnCores® ()                                        | 3 □ 125AGBh □ 125<br>2) □ 500AGB □ 500<br>na (pH12) □<br>) □ TerraCores <sup>®</sup> (  | AGJ □ 500A<br>□<br>) @ <u>202</u> C            | PB □ 125<br>GJs (pH<br>44 0 <u>2.x</u> | PBznna ()<br>_2) □ 50<br>_ □<br><u>♪℃</u> □ | рН <u>9</u> )<br>0РВ |
| Container: <b>A</b> = Amber, <b>B</b> = Bottle, <b>C</b> = Ole<br>Preservative: <b>b</b> = buffered, <b>f</b> = filtered, <b>h</b> =                                                                                                | ar, E = Envelope, <b>G</b> = Glass, J =                                                                                    | = Jar, $\mathbf{P}$ = Plastic, and<br>$\mathbf{p}_2 = Na_2S_2O_3$ , $\mathbf{p} = H_3P$ | <b>Z</b> = Ziploc/Re<br>O <sub>4</sub> , Label | ed/Check                               | Bag                                         |                      |

10 Commercial Blvd | Ste 100 | Novato, CA 94949

415.884.8011 | 800.668.3220 | f: 415.366.3388

Appendix D MET Laboratory Data Report Submitted by Eurofins |Calscience

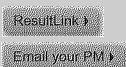
Page 1 of 19

# 🔅 eurofins

## Calscience

# WORK ORDER NUMBER: 18-05-1060

## The difference is service




AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: FOTH CLE Engineering Client Project Name: WETA Attention: Wendy Rocha 15 Creek Road Marion, MA 02738-9999



Approved for release on 06/04/2018 by: Carla Hollowell Project Manager



Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 + TEL: (714) 895-5494 + FAX: (714) 894-7501 + www.calscience.com

# eurofins

Client Project Name:

Calscience

WETA

## Contents

| Work Orde | er Number: 18-05-1060                                                                                                                                                                                    |                    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1         | Work Order Narrative.                                                                                                                                                                                    | 3                  |
| 2         | Sample Summary                                                                                                                                                                                           | 4                  |
|           | Client Sample Data.<br>3.1 SM 2540 D Total Suspended Solids (Aqueous).<br>3.2 EPA 1631E Low Level Hg, Total (Aqueous).<br>3.3 EPA 1640 ICP/MS Metals (Aqueous).<br>3.4 EPA 1640 ICP/MS Metals (Aqueous). | 5<br>5<br>7<br>8   |
| 4         | Quality Control Sample Data.         4.1 MS/MSD.         4.2 Sample Duplicate.         4.3 LCS/LCSD.                                                                                                     | 9<br>9<br>11<br>12 |
| 5         | Glossary of Terms and Qualifiers.                                                                                                                                                                        | 16                 |
| 6         | Chain-of-Custody/Sample Receipt Form                                                                                                                                                                     | 17                 |

#### Work Order: 18-05-1060

Page 1 of 1

#### **Condition Upon Receipt:**

Samples were received under Chain-of-Custody (COC) on 05/11/18. They were assigned to Work Order 18-05-1060.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

#### Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

#### **Quality Control:**

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

#### Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

#### Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

#### **DoD Projects:**

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.



| Sample lo | dentification        | Lab Number | Collection Date and Time | Number of<br>Containers | Matrix         |
|-----------|----------------------|------------|--------------------------|-------------------------|----------------|
| Attn:     | Wendy Rocha          |            |                          |                         |                |
|           |                      |            | Number of<br>Containers: |                         | 4              |
|           |                      |            | Date/Time<br>Received:   |                         | 05/11/18 10:00 |
|           | Marion, MA 02738-999 | 99         | PO Number:               |                         |                |
|           | 15 Creek Road        |            | Project Name:            |                         | WETA           |
| Client:   | FOTH CLE Engineerin  | g          | Work Order:              |                         | 18-05-1060     |

DU-1 Comp

18-05-1060-1

05/10/18 11:10

4

Aqueous



Solids, Total Suspended

| FOTH CLE Engineering                |                          |                        | Date Recei     | ved:            |                   |                       | 05/11/18          |
|-------------------------------------|--------------------------|------------------------|----------------|-----------------|-------------------|-----------------------|-------------------|
| 15 Creek Road                       |                          |                        | Work Order     | r:              |                   |                       | 18-05-1060        |
| Marion, MA 02738-9999               |                          |                        | Preparation    | n:              |                   |                       | N/A               |
|                                     |                          |                        | Method:        |                 |                   |                       | SM 2540 D         |
|                                     |                          |                        | Units:         |                 |                   |                       | mg/L              |
| Project: WETA                       |                          |                        |                |                 |                   | Pa                    | age 1 of 1        |
| Client Sample Number                | Lab Sample<br>Number     | Date/Time<br>Collected | Matrix         | Instrument      | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID       |
| DU-1 Comp                           | 18-05-1060-1-A           | 05/10/18<br>11:10      | Aqueous        | N/A             | 05/16/18          | 05/16/18<br>18:00     | 10516TSSL1        |
| Comment(s): - Results were evaluate | ed to the MDL (DL), cond | centrations >=         | to the MDL (DI | L) but < RL (LC | Q), if found, are | qualified with a      | a "J" flag.       |
| Parameter                           | Resu                     | <u>lt</u>              | <u>RL</u>      | MDL             | DF                | <u>(</u>              | <u>Qualifiers</u> |
| Solids, Total Suspended             | 17                       |                        | 1.0            | 0.83            | 1.00              |                       |                   |
| Method Blank                        | 099-09-010-9140          | N/A                    | Aqueous        | N/A             | 05/16/18          | 05/16/18<br>18:00     | 10516TSSL1        |
| Comment(s): - Results were evaluate | ed to the MDL (DL), cond | centrations >=         | to the MDL (DI | L) but < RL (LC | Q), if found, are | qualified with a      | a "J" flag.       |
| Parameter                           | Resu                     | lt                     | <u>RL</u>      | MDL             | DF                | (                     | Qualifiers        |

1.0

0.83

1.00

ND



| FOTH CLE Engir             | eering                  |                      |                        | Date Recei       | ved:             |                   |                       | 05/11/18          |
|----------------------------|-------------------------|----------------------|------------------------|------------------|------------------|-------------------|-----------------------|-------------------|
| 15 Creek Road              |                         |                      |                        | Work Order       | r:               |                   |                       | 18-05-1060        |
| Marion, MA 0273            | 8-9999                  |                      |                        | Preparation      | n:               |                   | EP                    | A 1631E Total     |
|                            |                         |                      |                        | Method:          |                  |                   |                       | EPA 1631E         |
|                            |                         |                      |                        | Units:           |                  |                   |                       | ug/L              |
| Project: WETA              |                         |                      |                        |                  |                  |                   | Pa                    | age 1 of 1        |
| Client Sample Numbe        | er                      | Lab Sample<br>Number | Date/Time<br>Collected | Matrix           | Instrument       | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID       |
| DU-1 Comp                  |                         | 18-05-1060-1-D       | 05/10/18<br>11:10      | Aqueous          | Hg/AF 1          | 05/11/18          | 05/11/18<br>00:00     | 180510LA1A        |
| Comment(s): - Re           | sults were evaluated to | the MDL (DL), cond   | centrations >=         | = to the MDL (DI | L) but < RL (LOC | Q), if found, are | qualified with a      | a "J" flag.       |
| Parameter <b>erementer</b> |                         | Resu                 | <u>llt</u>             | <u>RL</u>        | MDL              | DF                | 9                     | <u>Qualifiers</u> |
| Mercury                    |                         | 0.004                | 136                    | 0.000500         | 0.000113         | 1.00              |                       |                   |
| Method Blank               |                         | 099-15-224-226       | N/A                    | Aqueous          | Hg/AF 1          | 05/10/18          | 05/11/18<br>00:00     | 180510LA1A        |
| Comment(s): - Re           | sults were evaluated to | the MDL (DL), cond   | centrations >=         | = to the MDL (DI | L) but < RL (LOO | Q), if found, are | qualified with a      | a "J" flag.       |
| Parameter                  |                         | Resu                 | <u>ilt</u>             | <u>RL</u>        | MDL              | <u>DF</u>         |                       | <u>Qualifiers</u> |
| Mercury                    |                         | ND                   |                        | 0.000500         | 0.000113         | 1.00              |                       |                   |



| FOTH CLE Er      | ngineering                  |                      |                        | Date Recei      | ved:            |                   |                       | 05/11/18          |
|------------------|-----------------------------|----------------------|------------------------|-----------------|-----------------|-------------------|-----------------------|-------------------|
| 15 Creek Roa     | ıd                          |                      |                        | Work Orde       | r:              |                   |                       | 18-05-1060        |
| Marion, MA 02    | 2738-9999                   |                      |                        | Preparatior     | n:              |                   | EP                    | A 3005A Total     |
|                  |                             |                      |                        | Method:         |                 |                   |                       | EPA 1640          |
|                  |                             |                      |                        | Units:          |                 |                   |                       | ug/L              |
| Project: WET     | A                           |                      |                        |                 |                 |                   | Pa                    | age 1 of 1        |
| Client Sample Nu | umber                       | Lab Sample<br>Number | Date/Time<br>Collected | Matrix          | Instrument      | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID       |
| DU-1 Comp        |                             | 18-05-1060-1-B       | 05/10/18<br>11:10      | Aqueous         | ICP/MS 06       | 05/17/18          | 05/22/18<br>18:43     | 180517LA1A        |
| Comment(s):      | - Results were evaluated to | the MDL (DL), con    | centrations >:         | = to the MDL (D | L) but < RL (LC | Q), if found, are | qualified with a      | a "J" flag.       |
| Parameter        |                             | Resu                 | <u>ult</u>             | <u>RL</u>       | MDL             | DF                | (                     | <u>Qualifiers</u> |
| Selenium         |                             | 0.084                | 44                     | 0.0500          | 0.0121          | 1.00              |                       |                   |
| Method Blank     |                             | 099-13-067-795       | N/A                    | Aqueous         | ICP/MS 06       | 05/17/18          | 05/22/18<br>15:38     | 180517LA1A        |
| Comment(s):      | - Results were evaluated to | o the MDL (DL), con  | centrations >=         | = to the MDL (D | L) but < RL (LC | Q), if found, are | qualified with a      | a "J" flag.       |
| Parameter        |                             | Resu                 | <u>ılt</u>             | <u>RL</u>       | MDL             | DF                | <u>(</u>              | <u>Qualifiers</u> |
| Selenium         |                             | ND                   |                        | 0.0500          | 0.0121          | 1.00              |                       |                   |

Page 7 of 19



| FOTH CLE Engineering    | g                                  |                       | Date Recei        | ved:            |                   |                       | 05/11/18          |  |
|-------------------------|------------------------------------|-----------------------|-------------------|-----------------|-------------------|-----------------------|-------------------|--|
| 15 Creek Road           | -                                  |                       | Work Order        | r:              |                   |                       | 18-05-1060        |  |
| Marion, MA 02738-999    | 9                                  |                       | Preparation       | ):              |                   | EPA 3005A Fi          |                   |  |
|                         |                                    |                       | Method:           |                 |                   |                       | EPA 1640          |  |
|                         |                                    |                       | Units:            |                 |                   |                       | ug/L              |  |
| Project: WETA           |                                    |                       | onno.             |                 |                   | Pa                    | ge 1 of 1         |  |
| Client Sample Number    | Lab Sample<br>Number               | Date/Tim<br>Collected |                   | Instrument      | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID       |  |
| DU-1 Comp               | 18-05-1060-1-C                     | 05/10/18<br>11:10     | Aqueous           | ICP/MS 06       | 05/17/18          | 05/17/18<br>15:24     | 180517LA1F        |  |
| Comment(s): - Results w | vere evaluated to the MDL (DL), co | oncentrations         | >= to the MDL (DI | L) but < RL (LO | Q), if found, are | qualified with a      | "J" flag.         |  |
| Parameter               | Re                                 | sult                  | <u>RL</u>         | MDL             | <u>DF</u>         | <u>C</u>              | <u>Qualifiers</u> |  |
| Arsenic                 | 4.7                                | 70                    | 0.0300            | 0.0122          | 1.00              |                       |                   |  |
| Cadmium                 | 0.0                                | )275                  | 0.0300            | 0.00567         | 1.00              | J                     |                   |  |
| Chromium                | 0.2                                | 299                   | 0.500             | 0.164           | 1.00              | J                     |                   |  |
| Copper                  | 1.2                                | 21                    | 0.0300            | 0.00898         | 1.00              |                       |                   |  |
| Lead                    | 0.0                                | )455                  | 0.0300            | 0.0135          | 1.00              |                       |                   |  |
| Nickel                  | 2.2                                | 24                    | 0.0500            | 0.00607         | 1.00              |                       |                   |  |
| Silver                  | NE                                 | )                     | 0.0500            | 0.00822         | 1.00              |                       |                   |  |
| Zinc                    | 0.6                                | 36                    | 0.500             | 0.0736          | 1.00              |                       |                   |  |
| Method Blank            | 099-15-823-332                     | N/A                   | Aqueous           | ICP/MS 06       | 05/17/18          | 05/17/18<br>13:08     | 180517LA1F        |  |
| Comment(s): - Results w | vere evaluated to the MDL (DL), co | oncentrations         | >= to the MDL (D  | L) but < RL (LO | Q), if found, are | qualified with a      | "J" flag.         |  |
| Parameter               | Re                                 | sult                  | <u>RL</u>         | MDL             | DF                | <u>C</u>              | Qualifiers        |  |
| Arsenic                 | NE                                 | )                     | 0.0300            | 0.0122          | 1.00              |                       |                   |  |
| Cadmium                 | NE                                 | )                     | 0.0300            | 0.00567         | 1.00              |                       |                   |  |
| Chromium                | NE                                 | )                     | 0.500             | 0.164           | 1.00              |                       |                   |  |
| Copper                  | NE                                 | )                     | 0.0300            | 0.00898         | 1.00              |                       |                   |  |
| Lead                    | NE                                 | )                     | 0.0300            | 0.0135          | 1.00              |                       |                   |  |
| Nickel                  | NE                                 | )                     | 0.0500            | 0.00607         | 1.00              |                       |                   |  |
| Silver                  | 0.0                                | 0110                  | 0.0500            | 0.00822         | 1.00              | J                     |                   |  |
| Zinc                    | NE                                 |                       | 0.500             | 0.0736          | 1.00              |                       |                   |  |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

**Return to Contents** 



| FOTH CLE Engineering      |                               |                       |                    | Da               | te Received            | :                          |          |            |            | 05/11/18   |
|---------------------------|-------------------------------|-----------------------|--------------------|------------------|------------------------|----------------------------|----------|------------|------------|------------|
| 15 Creek Road             |                               |                       |                    | Wc               | ork Order:             |                            |          |            | 18         | 8-05-1060  |
| Marion, MA 02738-9999     |                               |                       |                    | Pre              | eparation:             |                            |          |            | T22.1      | 1.5.All DI |
|                           |                               |                       |                    | Me               | thod:                  |                            |          |            | E          | PA 1631E   |
| Project: WETA             |                               |                       |                    |                  |                        |                            |          |            | Page 1     | of 2       |
| Quality Control Sample ID | Туре                          |                       | Matrix             |                  | Instrument             | Date Prepared              | Date Ana | lyzed      | MS/MSD Bat | tch Number |
| 18-04-1194-1              | Sample                        |                       | Sedimer            | nt               | Hg/AF 1                | 05/01/18                   | 05/11/18 | 00:00      | 180510SA1E | 3          |
| 18-04-1194-1              | Matrix Spike                  |                       | Sedimer            | nt               | Hg/AF 1                | 05/01/18                   | 05/11/18 | 00:00      | 180510SA1E | 3          |
| 18-04-1194-1              | Matrix Spike                  | Duplicate             | Sedimer            | nt               | Hg/AF 1                | 05/01/18                   | 05/11/18 | 00:00      | 180510SA1E | 3          |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Re | <u>MSD</u><br>c. Conc. | <u>MSD</u><br><u>%Rec.</u> | %Rec. CL | <u>RPD</u> | RPD CL     | Qualifiers |
| Mercury                   | 0.01238                       | 0.02000               | 0.02948            | 86               | 0.02775                | 5 77                       | 71-125   | 6          | 0-24       |            |

Return to Contents



| FOTH CLE Engineering  | Date Received: | 05/11/18        |
|-----------------------|----------------|-----------------|
| 15 Creek Road         | Work Order:    | 18-05-1060      |
| Marion, MA 02738-9999 | Preparation:   | EPA 3005A Filt. |
|                       | Method:        | EPA 1640        |
| Project: WETA         |                | Page 2 of 2     |

| Quality Control Sample ID | Туре                          |                       | Matrix             | Inst               | trument             | Date Prepared       | Date Ana        | lyzed      | MS/MSD Ba     | tch Number |
|---------------------------|-------------------------------|-----------------------|--------------------|--------------------|---------------------|---------------------|-----------------|------------|---------------|------------|
| DU-1 Comp                 | Sample                        |                       | Aqueou             | s ICP              | P/MS 06             | 05/17/18            | 05/17/18        | 15:24      | 180517SA1     |            |
| DU-1 Comp                 | Matrix Spike                  |                       | Aqueou             | s ICP              | P/MS 06             | 05/17/18            | 05/17/18        | 14:52      | 180517SA1     |            |
| DU-1 Comp                 | Matrix Spike                  | Duplicate             | Aqueou             | s ICP              | P/MS 06             | 05/17/18            | 05/17/18        | 15:00      | 180517SA1     |            |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Rec. | <u>MSD</u><br>Conc. | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u> | <u>RPD</u> | <u>RPD CL</u> | Qualifiers |
| Arsenic                   | 4.702                         | 0.5000                | 5.323              | 4X                 | 5.111               | 4X                  | 50-150          | 4X         | 0-20          | Q          |
| Cadmium                   | ND                            | 0.5000                | 0.5346             | 107                | 0.5504              | 110                 | 50-150          | 3          | 0-20          |            |
| Chromium                  | ND                            | 5.000                 | 6.154              | 123                | 6.397               | 128                 | 50-150          | 4          | 0-20          |            |
| Copper                    | 1.210                         | 0.5000                | 1.794              | 117                | 1.867               | 132                 | 50-150          | 4          | 0-20          |            |
| Lead                      | 0.04554                       | 0.5000                | 0.4534             | 82                 | 0.4531              | 82                  | 50-150          | 0          | 0-20          |            |
| Nickel                    | 2.242                         | 0.5000                | 2.668              | 4X                 | 2.861               | 4X                  | 50-150          | 4X         | 0-20          | Q          |
| Selenium                  | 0.08096                       | 0.5000                | 0.6037             | 105                | 0.5624              | 96                  | 50-150          | 7          | 0-20          |            |
| Silver                    | ND                            | 0.2500                | 0.1915             | 77                 | 0.1904              | 76                  | 50-150          | 1          | 0-20          |            |
| Zinc                      | 0.6356                        | 5.000                 | 6.637              | 120                | 6.863               | 125                 | 50-150          | 3          | 0-20          |            |



| FOTH CLE Engineering      |                  |              | Date Received | :              |                | 05/11/18               |
|---------------------------|------------------|--------------|---------------|----------------|----------------|------------------------|
| 15 Creek Road             |                  |              | Work Order:   |                |                | 18-05-1060             |
| Marion, MA 02738-9999     |                  |              | Preparation:  |                |                | N/A                    |
|                           |                  |              | Method:       |                |                | SM 2540 D              |
| Project: WETA             |                  |              |               |                |                | Page 1 of 1            |
| Quality Control Sample ID | Туре             | Matrix       | Instrument    | Date Prepared  | Date Analyzed  | Duplicate Batch Number |
| 18-05-0738-2              | Sample           | Aqueous      | N/A           | 05/16/18 00:00 | 05/16/18 18:00 | 10516TSSD2             |
| 18-05-0738-2              | Sample Duplicate | Aqueous      | N/A           | 05/16/18 00:00 | 05/16/18 18:00 | 10516TSSD2             |
| Parameter                 |                  | Sample Conc. | DUP Conc.     | RPD            | RPD CL         | Qualifiers             |
| Solids, Total Suspended   |                  | 1126         | 1186          | 5              | 0-20           |                        |





| FOTH CLE Engineering      |      |           |                     | Date Receiv  | ed:        |                 |              |             | 05/11/18    |
|---------------------------|------|-----------|---------------------|--------------|------------|-----------------|--------------|-------------|-------------|
| 15 Creek Road             |      |           |                     | Work Order:  |            |                 |              | 1           | 8-05-1060   |
| Marion, MA 02738-9999     |      |           |                     | Preparation: |            |                 |              |             | N/A         |
|                           |      |           |                     | Method:      |            |                 |              | Ś           | SM 2540 D   |
| Project: WETA             |      |           |                     |              |            |                 |              | Page        | 1 of 4      |
| Quality Control Sample ID | Туре | Mat       | rix                 | Instrument   | Date Prepa | ared Da         | te Analyzed  | LCS/LCSD Ba | atch Number |
| 099-09-010-9140           | LCS  | Aqu       | ieous               | N/A          | 05/16/18   | 05/             | /16/18 18:00 | 10516TSSL1  |             |
| 099-09-010-9140           | LCSD | A         |                     | N1/A         | 05/40/40   |                 |              |             |             |
|                           | LCSD | Aqu       | ieous               | N/A          | 05/16/18   | 05/             | /16/18 18:00 | 10516155L1  |             |
| Parameter                 |      | LCS Conc. | LCS<br><u>%Rec.</u> | LCSD Conc.   |            | 05/<br>%Rec. Cl |              | RPD CL      | Qualifiers  |

Return to Contents





| FOTH CLE Engineering      |             |           |                            | Date Receiv | /ed:          |             |              |            |             | 05/11/18    |
|---------------------------|-------------|-----------|----------------------------|-------------|---------------|-------------|--------------|------------|-------------|-------------|
| 15 Creek Road             |             |           |                            | Work Order  | :             |             |              |            | 1           | 8-05-1060   |
| Marion, MA 02738-9999     |             |           |                            | Preparation | :             |             |              |            | EPA 1       | 631E Total  |
|                           |             |           |                            | Method:     |               |             |              |            | E           | PA 1631E    |
| Project: WETA             |             |           |                            |             |               |             |              |            | Page        | 2 of 4      |
| Quality Control Sample ID | Туре        | Ma        | trix                       | Instrument  | Date Pre      | epared      | Date         | Analyzed   | LCS/LCSD Ba | atch Number |
| 099-15-224-226            | LCS         | Aq        | ueous                      | Hg/AF 1     | 05/10/18      | 3           | 05/11        | /18 00:00  | 180510LA1A  |             |
| 099-15-224-226            | LCSD        | Aq        | ueous                      | Hg/AF 1     | 05/10/18      | 3           | 05/11        | 1/18 00:00 | 180510LA1A  |             |
| Parameter                 | Spike Added | LCS Conc. | <u>LCS</u><br><u>%Rec.</u> | LCSD Conc.  | LCSD<br>%Rec. | <u>%Rec</u> | <u>:. CL</u> | <u>RPD</u> | RPD CL      | Qualifiers  |
| Mercury                   | 0.02000     | 0.02282   | 114                        | 0.02152     | 108           | 71-12       |              | 6          | 0-20        |             |





| FOTH CLE Engineering      |             |           |                            | Date Receiv | ved:                 |             |             |            |             | 05/11/18    |
|---------------------------|-------------|-----------|----------------------------|-------------|----------------------|-------------|-------------|------------|-------------|-------------|
| 15 Creek Road             |             |           |                            | Work Order  | :                    |             |             |            | 1           | 8-05-1060   |
| Marion, MA 02738-9999     |             |           |                            | Preparation | :                    |             |             |            | EPA 3       | 005A Total  |
|                           |             |           |                            | Method:     |                      |             |             |            |             | EPA 1640    |
| Project: WETA             |             |           |                            |             |                      |             |             |            | Page        | 3 of 4      |
| Quality Control Sample ID | Туре        | Ма        | atrix                      | Instrument  | Date Pro             | epared      | Date        | Analyzed   | LCS/LCSD Ba | atch Number |
| 099-13-067-795            | LCS         | Aq        | lueous                     | ICP/MS 06   | 05/17/18             | B           | 05/22       | /18 16:17  | 180517LA1A  |             |
| 099-13-067-795            | LCSD        | Aq        | lueous                     | ICP/MS 06   | 05/17/18             | B           | 05/22       | /18 16:23  | 180517LA1A  |             |
| Parameter                 | Spike Added | LCS Conc. | <u>LCS</u><br><u>%Rec.</u> | LCSD Conc.  | <u>LCSD</u><br>%Rec. | <u>%Rec</u> | <u>. CL</u> | <u>RPD</u> | RPD CL      | Qualifiers  |
| Selenium                  | 0.5000      | 0.5937    | 119                        | 0.5898      | 118                  | 70-13       | ^           | 4          | 0-20        |             |





| FOTH CLE Engineering  | Date Received: | 05/11/18        |
|-----------------------|----------------|-----------------|
| 15 Creek Road         | Work Order:    | 18-05-1060      |
| Marion, MA 02738-9999 | Preparation:   | EPA 3005A Filt. |
|                       | Method:        | EPA 1640        |
| Project: WETA         |                | Page 4 of 4     |

| Quality Control Sample ID | Туре        | Mat       | rix                        | Instrument | Date Pre      | epared       | Date        | Analyzed   | LCS/LCSD Ba | atch Number |
|---------------------------|-------------|-----------|----------------------------|------------|---------------|--------------|-------------|------------|-------------|-------------|
| 099-15-823-332            | LCS         | Aqu       | leous                      | ICP/MS 06  | 05/17/18      | ;            | 05/17       | /18 13:40  | 180517LA1F  |             |
| 099-15-823-332            | LCSD        | Aqu       | leous                      | ICP/MS 06  | 05/17/18      | ;            | 05/17       | /18 13:48  | 180517LA1F  |             |
| Parameter                 | Spike Added | LCS Conc. | <u>LCS</u><br><u>%Rec.</u> | LCSD Conc. | LCSD<br>%Rec. | <u>%Rec.</u> | <u>. CL</u> | <u>RPD</u> | RPD CL      | Qualifiers  |
| Arsenic                   | 0.5000      | 0.5446    | 109                        | 0.5433     | 109           | 70-130       | )           | 0          | 0-20        |             |
| Cadmium                   | 0.5000      | 0.4817    | 96                         | 0.4932     | 99            | 70-130       | )           | 2          | 0-20        |             |
| Chromium                  | 5.000       | 5.226     | 105                        | 5.351      | 107           | 70-130       | )           | 2          | 0-20        |             |
| Copper                    | 0.5000      | 0.5052    | 101                        | 0.5069     | 101           | 70-130       | )           | 0          | 0-20        |             |
| Lead                      | 0.5000      | 0.4357    | 87                         | 0.4418     | 88            | 70-130       | )           | 1          | 0-20        |             |
| Nickel                    | 0.5000      | 0.4726    | 95                         | 0.4876     | 98            | 70-130       | )           | 3          | 0-20        |             |
| Silver                    | 0.2500      | 0.2492    | 100                        | 0.2664     | 107           | 70-130       | )           | 7          | 0-20        |             |
| Zinc                      | 5.000       | 5.078     | 102                        | 5.155      | 103           | 70-130       | )           | 1          | 0-20        |             |



#### Calscience

#### Work Order: 18-05-1060

**Glossary of Terms and Qualifiers** 

| Work Order:       | r: 18-05-1060 Page 1 c                                                                                                                                                                                                                                                                                                                                                     | of 1                                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| <u>Qualifiers</u> | Definition                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| *                 | See applicable analysis comment.                                                                                                                                                                                                                                                                                                                                           |                                       |
| <                 | Less than the indicated value.                                                                                                                                                                                                                                                                                                                                             |                                       |
| >                 | Greater than the indicated value.                                                                                                                                                                                                                                                                                                                                          |                                       |
| 1                 | Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported with clarification.                                                                                                                                                                                                                              | out further                           |
| 2                 | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compo in control and, therefore, the sample data was reported without further clarification.                                                                                                                                                        | und was                               |
| 3                 | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interfere associated LCS recovery was in control.                                                                                                                                                                                                    | ence. The                             |
| 4                 | The MS/MSD RPD was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                                                                    |                                       |
| 5                 | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                    |                                       |
| 6                 | Surrogate recovery below the acceptance limit.                                                                                                                                                                                                                                                                                                                             |                                       |
| 7                 | Surrogate recovery above the acceptance limit.                                                                                                                                                                                                                                                                                                                             |                                       |
| В                 | Analyte was present in the associated method blank.                                                                                                                                                                                                                                                                                                                        |                                       |
| BU                | Sample analyzed after holding time expired.                                                                                                                                                                                                                                                                                                                                |                                       |
| BV                | Sample received after holding time expired.                                                                                                                                                                                                                                                                                                                                |                                       |
| CI                | See case narrative.                                                                                                                                                                                                                                                                                                                                                        |                                       |
| Е                 | Concentration exceeds the calibration range.                                                                                                                                                                                                                                                                                                                               |                                       |
| ET                | Sample was extracted past end of recommended max. holding time.                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · · |
| HD                | The chromatographic pattern was inconsistent with the profile of the reference fuel standard.                                                                                                                                                                                                                                                                              |                                       |
| HDH               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocar were also present (or detected).                                                                                                                                                                                                             | bons                                  |
| HDL               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarb<br>also present (or detected).                                                                                                                                                                                                              | ons were                              |
| J                 | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value estimated.                                                                                                                                                                                                                               | is                                    |
| JA                | Analyte positively identified but quantitation is an estimate.                                                                                                                                                                                                                                                                                                             |                                       |
| ME                | LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).                                                                                                                                                                                                                                                                   |                                       |
| ND                | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                                                                                                                                                   |                                       |
| Q                 | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                                                                                                                                              |                                       |
| SG                | The sample extract was subjected to Silica Gel treatment prior to analysis.                                                                                                                                                                                                                                                                                                |                                       |
| Х                 | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                                                                                                                                        |                                       |
| Z                 | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                                                                                                                                     |                                       |
|                   | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC result reported on a wet weight basis.                                                                                                                                                                                                       | s are                                 |
|                   | Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 mir (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside c stated holding time unless received at the laboratory within 15 minutes of the collection time. | nutes<br>of the                       |
|                   | A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are repo                                                                                                                                                                                                                                       | orted,                                |

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Pacific EcoRisk

Eurofins Calscience CHAIN-OF-CUSTODY RECORD

|                                                                                                 |                                                                                                                                                                       |               | Landon and the second se |                   |          |                              |                 | TRAN             |                    |          |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|------------------------------|-----------------|------------------|--------------------|----------|
| Client Name:                                                                                    | Foth-CLE Engineering Gro                                                                                                                                              | eering Group  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 | REQUEST          | REQUESTED ANALYSIS |          |
| Client Address:                                                                                 | 15 Creek Road<br>Marion, MA 02738                                                                                                                                     | 38            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 | , 01<br>, N, , d |                    |          |
| Sampled By:                                                                                     | PER                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          | <b>(0</b> ‡                  | (31             |                  |                    |          |
| Phone:                                                                                          | (508) 762-0777                                                                                                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          | 91 \                         | 163             |                  |                    |          |
| Cell:                                                                                           | (508) 642-2469                                                                                                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              | <u> </u>        |                  |                    |          |
| Project Manager:                                                                                | Wendy Rocha <wendy.ro< td=""><td>Wendy, Roch</td><td>cha@foth.com&gt;</td><td></td><td></td><td>) ա</td><td>bav<br/>3) (E</td><td></td><td></td><td></td></wendy.ro<> | Wendy, Roch   | cha@foth.com>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |          | ) ա                          | bav<br>3) (E    |                  |                    |          |
| Project Name:                                                                                   | WETA                                                                                                                                                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          | nµı                          | <u></u>         |                  |                    |          |
| PO Nimber                                                                                       | Foth-CLE - 0017S414,10                                                                                                                                                | 7S414.10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          | ələ                          |                 |                  |                    |          |
|                                                                                                 |                                                                                                                                                                       | SHREEK SHREEK |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          | S IE                         | <u></u>         |                  |                    |          |
| Client Sample ID                                                                                | oampie<br>Date                                                                                                                                                        | Time          | Matrix*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number            | Type     |                              |                 | 2'6¥<br>\$540    |                    |          |
| DU-1 Comp                                                                                       | 5/10/18                                                                                                                                                               | 0111          | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -er 4             | multiple | X X                          | ×               | ×                |                    |          |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gans .            |          |                              |                 |                  |                    |          |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 |                  |                    |          |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 |                  |                    |          |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 |                  |                    |          |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 |                  |                    |          |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 |                  |                    |          |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 |                  |                    |          |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 |                  |                    |          |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              |                 |                  |                    |          |
| Correct Containers:                                                                             | Yes                                                                                                                                                                   | No            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                              | RELINQUISHED BY | SHED BY          |                    |          |
| Sample Temperature:                                                                             | Ambient                                                                                                                                                               | Cold          | Warm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature:        | W Carto  |                              |                 | Signature:       | 4                  |          |
| Sample Preservative:                                                                            | Yes                                                                                                                                                                   | No            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ( MACAN  |                              |                 | 1                |                    | X        |
| Turnaround Time:                                                                                | STD                                                                                                                                                                   | Specify:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Print:          | MACAN    | Cine                         |                 | Print:           | X                  |          |
| Comments:<br>Contact Wendy Rocha at Foth-CLE <wendy.rocha@foth.com> with</wendy.rocha@foth.com> | vendy.rocha@foth.c                                                                                                                                                    | om> with an   | any questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organization: PER | on: PER  |                              |                 | Organization     |                    |          |
| regarding sample analyses.                                                                      |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE: 5/          | 5/10/18  | TIME: /3                     | 1340            | DATE: ≶          | 10/103             |          |
| Sample date and time are when the sample was extracted after 24                                 | ample was extracte                                                                                                                                                    | No. 10 at 1   | hour settling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |          |                              | RECEIVED BY     | 'ED BY           | L.                 |          |
| period                                                                                          |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Signature:        | X        | $\left\langle \right\rangle$ |                 | Signature:       | 1 MA               | <i>M</i> |
|                                                                                                 |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Print             | F.F.     | 2 VE                         | ЧМР             | Print            | "N<br>B            | QHTEL-   |
| * Dissolved metals samples need to be filtered and preserved at Eurofins                        | be filtered and pres                                                                                                                                                  | erved at Eur  | ofins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Organization:     | on: ECJ  |                              |                 | Organization:    | on: EC             |          |
| Calscience upon arrival.                                                                        |                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE:             | 1.1.12   | TIMENZUD                     | ç               | DATE: <          |                    | TIME INN |

Page 17 of 19

Return to Co



Ship From CAL SCIENCE- CONCORD ALAN KEMP 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To CEL SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00 Weight: 0 lb(s) Reference: PACIFIC ECORISK, AECOM Delivery Instructions:

Signature Type: STANDARD



#### LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode. Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer. Step 2: Fold this page in half.

Step 3. Securely attach this label to your package and do not cover the barcode.

#### TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the GSO service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gso.com.

| 🔆 eurofins                                                                                                                         |                                                                                     | WORK ORDE                        | R NUMBER        | : <u>18-</u>                                           | <b>)5</b> _19(      | 060                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|-----------------|--------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| Calscience                                                                                                                         | SAMPLE RECEIPT                                                                      | CHECKLIST                        | c               |                                                        | . ) (               | <b>7</b> - 1                                                                                                    |
| CLIENT: Paulti E                                                                                                                   | *                                                                                   | ONEOREIOT                        |                 |                                                        | <u>,</u>            |                                                                                                                 |
|                                                                                                                                    |                                                                                     |                                  | DAII            |                                                        |                     |                                                                                                                 |
| TEMPERATURE: (Criteria 0.0°C –<br>Thermometer ID: SC6 (CF: +0.1°C)<br>Sample(s) outside temperatur<br>Sample(s) outside temperatur | ), Temperature (w/o CF): <u>2.9</u><br>re criteria (PM/APM contacted by             | °C (w/ CF): <u>3</u><br>/)       |                 | Dellar                                                 | ik D:               | Sample                                                                                                          |
| □ Sample(s) received at ambient to                                                                                                 |                                                                                     | nsport by courier                |                 | Chook                                                  | ed by:              | 14                                                                                                              |
| Ambient Temperature:                                                                                                               |                                                                                     |                                  |                 | CHECK                                                  | eu by               | <u>+</u> Z                                                                                                      |
| CUSTODY SEAL:<br>Cooler Different and Intact<br>Sample(s) Present and Intact                                                       |                                                                                     | Not Present Not Present          | □ N/A<br>□ N/A  |                                                        | ed by:<br>ed by: // |                                                                                                                 |
| SAMPLE CONDITION:                                                                                                                  |                                                                                     |                                  |                 | Yes                                                    | No                  | N/A                                                                                                             |
| Chain-of-Custody (COC) document                                                                                                    | (s) received with samples                                                           |                                  |                 |                                                        |                     |                                                                                                                 |
| COC document(s) received comple                                                                                                    |                                                                                     |                                  |                 |                                                        |                     | ۵                                                                                                               |
| Sampling date Sampling t                                                                                                           | ime 🖾 Matrix 🖾 Number of co                                                         |                                  |                 | ·                                                      |                     |                                                                                                                 |
| No analysis requested O No                                                                                                         | t relinquished 🛛 No relinquishe                                                     | ed date 🛛 No relin               |                 |                                                        |                     |                                                                                                                 |
| Sampler's name indicated on COC                                                                                                    |                                                                                     |                                  |                 | a<br>a                                                 |                     |                                                                                                                 |
| Sample container label(s) consister                                                                                                |                                                                                     |                                  |                 | Z.                                                     | D                   |                                                                                                                 |
| Sample container(s) intact and in go                                                                                               |                                                                                     |                                  |                 | (************************************                  |                     |                                                                                                                 |
| Proper containers for analyses requ                                                                                                |                                                                                     |                                  |                 | P                                                      |                     |                                                                                                                 |
| Sufficient volume/mass for analyses                                                                                                |                                                                                     | ·····                            |                 | Z                                                      |                     |                                                                                                                 |
| Samples received within holding tim                                                                                                |                                                                                     |                                  |                 | Þ                                                      |                     | ۵                                                                                                               |
| Aqueous samples for certain ana                                                                                                    |                                                                                     |                                  |                 | -                                                      |                     |                                                                                                                 |
| pH     Residual Chlorine                                                                                                           |                                                                                     |                                  |                 |                                                        |                     |                                                                                                                 |
| Proper preservation chemical(s) no                                                                                                 |                                                                                     | aner                             |                 |                                                        |                     |                                                                                                                 |
| Unpreserved aqueous sample(s                                                                                                       |                                                                                     |                                  |                 |                                                        |                     |                                                                                                                 |
| Acid/base preserved samples - pH                                                                                                   |                                                                                     |                                  |                 | <u>,</u> ø                                             |                     | ū                                                                                                               |
| Container(s) for certain analysis free                                                                                             |                                                                                     |                                  |                 | <b>D</b>                                               |                     |                                                                                                                 |
| 🗆 Volatile Organics 🖾 Dissolve                                                                                                     | ed Gases (RSK-175) 🛛 Dissolv                                                        | ed Oxygen (SM 45                 | 00)             |                                                        |                     |                                                                                                                 |
| □ Carbon Dioxide (SM 4500) E<br>Tedlar™ bag(s) free of condensatio                                                                 |                                                                                     |                                  | cn)             |                                                        |                     |                                                                                                                 |
|                                                                                                                                    |                                                                                     |                                  | le 1 at Niemaka |                                                        |                     | · ~ - ,                                                                                                         |
| CONTAINER TYPE:<br>Aqueous: 🗆 VOA, 🗆 VOAh 🖾 VOAла;                                                                                 | C 100BL C 100Bles C 1250CB                                                          |                                  | k Lot Numbe     | di kalendar manada da | aan Maxaa kaan      | ana katalan kat |
| □ 250AGB □ 250CGB □ 250CGBs (p                                                                                                     |                                                                                     |                                  |                 |                                                        |                     |                                                                                                                 |
| □ 1AGB □ 1AGBna₂ □ 1AGBs (pH)                                                                                                      |                                                                                     |                                  |                 |                                                        |                     |                                                                                                                 |
| Solid:  402CGJ 802CGJ 1602C                                                                                                        | GJ □ Sleeve ( □ EnCores® (                                                          | _) 🛛 TerraCores® (_              |                 | _ 🖸                                                    | 0                   | <u> </u>                                                                                                        |
| Air: □ Tedlar™ □ Canister □ Sorbent                                                                                                |                                                                                     |                                  |                 |                                                        |                     |                                                                                                                 |
| Container: A = Amber, B = Bottle, C = (                                                                                            | Clear, E = Envelope, G = Glass, J =                                                 | Jar, <b>P</b> = Plastic, and     | Z = Ziploc/Res  | ealable B                                              | ag                  |                                                                                                                 |
| Preservative: b = buffered, f = filtered, I                                                                                        | n = HCI, n = HNO <sub>3</sub> , na = NaOH, na <sub>2</sub>                          | = $Na_2S_2O_3$ , $p = H_3P_3O_3$ | o₄, Labeleo     | l/Check                                                | ed by: <u>//</u>    | <u>'40</u>                                                                                                      |
| s = H <sub>2</sub> SO <sub>4</sub> , u = ultra-pure                                                                                | , x = Na <sub>2</sub> SO <sub>3</sub> +NaHSO <sub>4</sub> .H <sub>2</sub> O, znna = | Zn (CH3CO2)2 + Na0               | ЭН              | Review                                                 | ed by: 上            | <u>21</u>                                                                                                       |

10 Commercial Blvd | Ste 100 | Novato, CA 94949

415.884.8011 | 800.668.3220 | f: 415.366.3388

Appendix E Biological Testing Report Submitted by Pacific EcoRisk



Ms. Wendy Rocha FOTH and Van Dyke & Associates, Inc. 10 Commercial Blvd, Suite 100 Novato, CA 94949 June 21, 2018

Dear Ms. Rocha:

Please find attached an electronic copy of the report "Biological Testing of the DU-1 Composite Sediment Sample Collected from WETA Vallejo Ferry Terminal" in PDF format. Hard copies can be provided upon request.

If you have any questions, please give me a call at (707) 207-7761. I look forward to hearing from you.

Sincerely,

Mike McElroy Senior Project Manager



Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 28839.

### **DATA REPORT**

## Biological Testing of the DU-1 Composite Sediment Sample Collected from San Francisco Bay Area Water Emergency Transit Authority Vallejo Ferry Terminal

Prepared for

FOTH and Van Dyke & Associates, Inc. 10 Commercial Blvd, Suite 100 Novato, CA 94949

Prepared by

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534

June 2018



## **Table of Contents**

|                                                                                 | Page |
|---------------------------------------------------------------------------------|------|
| 1. INTRODUCTION                                                                 | 1    |
| 2. METHODS                                                                      | 1    |
| 2.1 Biological Testing Procedures                                               | 1    |
| 2.2 Receipt and Handling of Sediment Sample                                     | 2    |
| 2.3 Source of Natural Seawater                                                  | 2    |
| 2.4 Sediment Porewater Characterization                                         | 2    |
| 2.5 Solid-Phase Sediment Toxicity Testing with Leptocheirus plumulosus          | 2    |
| 2.5.1 Reference Toxicant Testing of the Leptocheirus plumulosus                 | 3    |
| 2.6 Solid-Phase Sediment Toxicity Testing with Neanthes arenaceodentata         | 4    |
| 2.6.1 Reference Toxicant Testing of the Neanthes arenaceodentata                | 5    |
| 2.7 Modified Elutriate Test (MET) Procedures                                    | 6    |
| 2.7.1 Preparation of MET Samples                                                |      |
| 2.7.2 MET Toxicity Testing with Americamysis bahia                              | 6    |
| 2.7.2.1 Reference Toxicant Testing of the Americamysis bahia                    | 7    |
| 3. BIOLOGICAL TESTING RESULTS                                                   | 8    |
| 3.1 Effects of WETA Vallejo Ferry Terminal DU1-Comp Sediment on Leptocheirus    |      |
| plumulosus                                                                      | 8    |
| 3.1.1 Reference Toxicant Toxicity to Leptocheirus plumulosus                    | 9    |
| 3.2 Effects of Mare Island Dry Dock DU1-Comp Sediment on Neanthes               |      |
| arenaceodentata                                                                 | 9    |
| 3.2.1 Reference Toxicant Toxicity to Neanthes arenaceodentata                   | 10   |
| 3.3 Effects of Mare Island Dry Dock DU1-Comp Modified Elutriate on Americamysis |      |
| bahia                                                                           |      |
| 3.3.1 Reference Toxicant Toxicity to Americamysis bahia                         | 11   |
| 3.4 Biological Testing QA/QC Summary                                            | 11   |
| 4. REFERENCES                                                                   | 13   |

i

## Appendices

| Appendix A | Chain-of-Custody Records for the Collection and Delivery of Vallejo Ferry<br>Terminal DU1-Comp Sediment                                                                            |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Appendix B | Whole Sediment Test Porewater and Water Quality Characteristics of Overlying Water                                                                                                 |
| Appendix C | Test Data and Summary of Statistics for the Toxicity Evaluation of Vallejo Ferry<br>Terminal DU1-Comp Sediment with the Amphipod, <i>Leptocheirus plumulosus</i>                   |
| Appendix D | Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Amphipod, <i>Leptocheirus plumulosus</i>                                                          |
| Appendix E | Test Data and Summary of Statistics for the Toxicity Evaluation of Vallejo Ferry<br>Terminal DU1-Comp Sediment with the Polychaete, <i>Neanthes arenaceodentata</i>                |
| Appendix F | Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Polychaete, <i>Neanthes arenaceodentata</i>                                                       |
| Appendix G | Test Data and Summary of Statistics for the Evaluation of the Toxicity of the DU1-<br>Comp Modified Elutriate Test (MET) Sediment Elutriate to Mysids ( <i>Americamysis</i> bahia) |
| Appendix H | Test Date and Summary of Statistics for the Reference Toxicant Evaluation of the Mysid, <i>Americamysis bahia</i>                                                                  |
| Appendix I | Bioassay Standard Test Conditions                                                                                                                                                  |

### List of Tables

|                                                                                           | Page |
|-------------------------------------------------------------------------------------------|------|
| Table 2-1. Sediment Porewater Initial Water Quality Characteristics                       | 2    |
| Table 3-1. Leptocheirus plumulosus Survival in the Vallejo Ferry Terminal Sediment        | 8    |
| Table 3-2. Reference Toxicant Testing: Effects of KCl on Leptocheirus plumulosus          | 9    |
| Table 3-3. Neanthes arenaceodentata Survival in the Vallejo Ferry Terminal Sediment       | 9    |
| Table 3-4. Reference Toxicant Testing: Effects of KCl on Neanthes arenaceodentata         | 10   |
| Table 3-5. Effects of the Vallejo Ferry Terminal Modified Elutriate on Americamysis bahia | 10   |
| Table 3-6. Reference Toxicant Testing: Effects of KCl on Americamysis bahia               | 11   |

4/54

### **1. INTRODUCTION**

FOTH Van Dyke & Associates Inc. (FOTH) has contracted Pacific EcoRisk (PER) to perform whole sediment and water column (sediment elutriate) bioassay testing of a sediment sample in support of the **San Francisco Bay Area Water Emergency Transit Authority** (WETA) Vallejo Ferry Terminal maintenance dredging sampling and testing program. The performance and results of this testing are presented in this report.

### 2. METHODS

### **2.1 Biological Testing Procedures**

There were three different biological tests performed for the site composite sample:

- 1. a 10-day sediment amphipod survival test with Leptocheirus plumulosus;
- 2. a 10-day sediment juvenile polychaete survival test with Neanthes arenaceodentata; and
- 3. a 96-hr modified elutriate mysid survival test with Americamysis bahia.

Please note, *Leptocheirus plumulosus* were used in this testing due to a lack of availability of a sufficient number of healthy and appropriately sized *Ampelisca abdita* from the collection locations on both the West and East coasts.

The methods used in conducting these tests followed established guidelines:

- Method E1367-99. Standard Guide for Conducting 10-day Static Toxicity Tests with Marine and Estuarine Amphipods. (ASTM 2016);
- Method E1611-00. Standard Guide for Conducting Sediment Tests with Marine and Estuarine Polychaetous Annelids. (ASTM 2016);
- Testing Manual for the Evaluation of Dredged Material Discharged in Waters of the U.S. (Inland Testing Manual, US EPA/USACE, 1998);
- Methods for Assessing the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Amphipods. (US EPA 1994);
- Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. (US EPA, 2002);
- USACE Technical Note EEDP-04-02. Interim Guidance for Predicting Quality of Effluent Discharged from Confined Dredged Material Disposal Areas-Test Procedures. U.S. Army Corps of Engineers, US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS. USACE (1985); and
- Public Notice 01-01. DMMO Guidelines for Implementing of the Inland Testing Manual in the San Francisco Bay Region. U.S. Army Corps of Engineers, US Army Corps of Engineers Operations and Readiness Branch, San Francisco, CA. USACE (2001).

### 2.2 Receipt and Handling of Sediment Sample

On May 3, 2018, a sediment sample designated "DU1-Comp" was collected from WETA Vallejo Ferry Terminal; in addition, a 'site water' sample was collected on May 2, 2018 for use in preparing the sediment elutriates. These samples were delivered to the PER testing lab, on ice and under chain-of-custody, on May 3, 2018. Upon receipt at the PER testing laboratory, the samples were logged in and stored in the dark and under refrigeration (i.e., at 4°C for the sediment and 0-6°C for the water sample) until needed. The chain-of-custody record for the collection and delivery of this sample is provided in Appendix A.

### 2.3 Source of Natural Seawater

The natural seawater used in these tests was obtained from the UC Davis Granite Canyon Marine Laboratory and is characterized as "pristine"; this water was stored at the PER laboratory in a 3000-gallon insulated HDPE tank maintained at 4°C. This seawater was 1-µm filtered and then adjusted to the desired test salinity (e.g., 30 ppt) via addition of Type 1 lab water (reverse-osmosis, de-ionized water) prior to use in these tests (these diluted natural seawaters are referred to using the adjusted salinity level [e.g., '30 ppt seawater']).

### 2.4 Sediment Porewater Characterization

Upon receipt, the WETA Vallejo Ferry Terminal sediment sample was homogenized in a large stainless steel bowl. Aliquots of the homogenized site sediment were centrifuged at 2,500 rpm for 15 minutes; the resulting supernatant porewaters were carefully collected and analyzed for routine water quality characteristics (Table 2-1).

| Sample ID | pН   | Salinity (ppt) | Total Ammonia<br>(mg/L N) | Total Sulfide<br>(mg/L) |
|-----------|------|----------------|---------------------------|-------------------------|
| DU1-Comp  | 7.43 | 15.8           | 26.5                      | 0.057                   |

 Table 2-1. Sediment Porewater Initial Water Quality Characteristics.

### 2.5 Solid-Phase Sediment Toxicity Testing with Leptocheirus plumulosus

The *L. plumulosus* used in this testing were obtained from a commercial supplier (Chesapeake Cultures, Inc., Hayes, VA), and were maintained at a salinity of 20 ppt at 25°C prior to use in the testing.

The sediment porewater ammonia concentration for the sample (Table 2-1) exceeded the USACE guidelines-recommended threshold of 15 mg/L. Accordingly, the test replicates (described below) were prepared for the sediments prior to test initiation so that they could be purged of ammonia by daily replacement of the overlying water with fresh 20 ppt seawater,



coupled with aeration, until the porewater total ammonia levels were below 15 mg/L, after which the testing was initiated. The sediment porewater ammonia concentrations measured at test initiation and at test termination are presented in Appendix B.

The testing was initiated on May 31, 2018. On the day preceding test initiation, the test replicates were set-up. Five replicates were established for the site sample, each replicate consisting of a 1-L glass beaker to which homogenized sediment was added to a depth of approximately 2-cm; additional "porewater" test replicates were similarly prepared for the determination of sediment porewater water quality characteristics at test initiation and at test termination. The overlying water for this testing consisted of 20 ppt seawater; approximately 800 mL of the 20 ppt seawater was carefully poured into each test replicate so as to minimize disturbance of the sediment. Test replicates were similarly established for the Lab Control (Paradise Cove sediment) treatment. All test replicates were maintained in a temperature-controlled room at 25°C under continuous illumination from fluorescent lighting, and each replicate was gently aerated.

The following day, and immediately prior to test initiation, routine water quality characteristics (temperature, pH, dissolved oxygen [D.O.], and salinity) were determined for the overlying water in each test replicate; in addition, a small sample of the overlying water was collected from each replicate and composited for each treatment for determination of the total ammonia in the overlying water at that treatment. At this time, one of the "porewater" test replicates was sacrificed for the determination of "initial" porewater water quality characteristics (Appendix B). The testing was then initiated with the allocation of 20 randomly selected *L. plumulosus* into each replicate container (aeration was shut off until the amphipods re-buried themselves, approximately 1 hr after their introduction). Each day, for the next nine days, the temperature, pH, D.O., and salinity of the overlying water were measured in one test replicate for each treatment.

After 10 days exposure, the testing was terminated and routine water quality characteristics (temperature, pH, D.O., and salinity) were again determined for each test replicate; in addition, a small sample of the overlying water was collected from each replicate and composited for each treatment for determination of the total ammonia in the overlying water at that treatment. At this time, the remaining "porewater" test replicate was sacrificed for the determination of "final" porewater water quality characteristics (Appendix B). The contents of each replicate beaker were then sieved and examined, and the surviving amphipods were collected and counted. The resulting survival data were statistically analyzed using the CETIS® statistical software (Tidepool Scientific, McKinleyville, CA). The results of this testing are summarized in Section 3.1.

### 2.5.1 Reference Toxicant Testing of the Leptocheirus plumulosus

In order to assess the sensitivity of the organisms used in these tests to chemical stress, concurrent reference toxicant testing was performed. The reference toxicant test was performed as a 96-hr static waterborne exposure using test solutions consisting of 20 ppt seawater spiked

Page 3



with potassium chloride (KCl) at test concentrations of 0.25, 0.5, 1, 2, and 4 g/L. A thin layer of clean Lab Control sediment was added to each test replicate to reduce stress to the organisms.

There were two replicates at each treatment, each replicate consisting of 400 mL of test solution in a 600-mL HDPE beaker. The test was initiated by randomly allocating 10 amphipods into each replicate beaker. The beakers were placed in a temperature-controlled room at 25°C under continual darkness. Routine water quality characteristics (D.O., pH, and temperature) of the treatment waters were measured and recorded for one randomly selected replicate per treatment each day.

After ~96 hrs, the test was terminated and the number of live amphipods in each replicate beaker was determined. The resulting test response data were statistically analyzed to determine key concentration-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS<sup>®</sup> software. These response endpoints were then compared to the typical response range established by the mean  $\pm 2$  SD of the point estimates generated by the 20 most recent previous reference toxicant tests performed by this lab. The results of this testing are summarized in Section 3.1.1.

### 2.6 Solid-Phase Sediment Toxicity Testing with Neanthes arenaceodentata

The *N. arenaceodentata* used in this testing were obtained from a commercial supplier (Aquatic Toxicology Support [ATS], Bremerton, WA), and were maintained at a salinity of 30 ppt prior to shipment to the testing lab; upon receipt, the test organisms were held in 30 ppt seawater at 20°C.

The sediment porewater ammonia concentrations for the sample (Table 2-1) exceeded the USACE guidelines-recommended threshold of 15 mg/L. Accordingly, the test replicates (described below) were prepared for the sediment prior to test initiation so that they could be purged of ammonia by daily replacement of the overlying water with fresh 28 ppt seawater, coupled with aeration, until the porewater total ammonia levels were below 15 mg/L, after which the testing was initiated. The sediment porewater ammonia concentrations measured at test initiation and at test termination are presented in Appendix B.

These sediment testing was initiated on May 8, 2018. On the day preceding test initiation, the test replicates were set-up. Five replicates were established for the site sample, each replicate consisting of a 1-L glass beaker to which approximately 200 mL (approximately 2.5 cm depth) of homogenized sediment was added; additional test replicates were set up for the determination of sediment porewater water quality characteristics at test initiation and at test termination. The overlying water consisted of 30 ppt seawater; approximately 800 mL of this water was carefully poured into each test replicate so as to minimize disturbance of the sediment. Test replicates were similarly established for the Lab Control (Paradise Cove sediment) treatment. The test replicates were then placed in a temperature-controlled room at 20°C, under cool white fluorescent lighting on a 12L:12D photoperiod. Each test replicate was gently aerated.

Page 4

The following day, and immediately prior to test initiation, routine water quality characteristics (temperature, pH, D.O., and salinity) were determined for the overlying water in each test replicate; in addition, a small sample of the overlying water was collected from each replicate and composited for each treatment for determination of the total ammonia in the overlying water at that treatment. At this time, one of the "porewater" test replicates was sacrificed for the determination of "initial" porewater water quality characteristics (Appendix B). The testing was then initiated with the allocation of 10 randomly selected polychaetes into each replicate container (aeration was shut off until the polychaetes re-buried themselves, approximately 1 hr after their introduction). Each day, for the next 10 days, the temperature, pH, D.O., and salinity of the overlying water were measured in one test replicate for each treatment.

After 10 days exposure, the testing was terminated and routine water quality characteristics (temperature, pH, D.O., and salinity) were again determined for each test replicate; in addition, a small sample of the overlying water was collected from each replicate and composited for each treatment for determination of the total ammonia in the overlying water at that treatment. At this time, the remaining "porewater" test replicate was sacrificed for the determination of "final" porewater water quality characteristics (Appendix B). The contents of each replicate beaker were then sieved and examined, and the surviving polychaetes were collected and counted. The resulting survival data were statistically analyzed using the CETIS<sup>®</sup> statistical software. The results of this testing are summarized in Section 3.2.

### 2.6.1 Reference Toxicant Testing of the Neanthes arenaceodentata

In order to assess the sensitivity of the organisms used in these tests to chemical stress, concurrent reference toxicant testing was performed. The reference toxicant test consists of a static acute 96-hr survival toxicity test of waterborne KCl, at test treatment concentrations of 0.25, 0.5, 1, 2, and 4, g/L.

There were two replicates at each treatment, each replicate consisting of 400 mL of test solution in a 600-mL HDPE beaker. The test was initiated by randomly allocating five polychaetes into each replicate beaker. The beakers were placed in a temperature-controlled room at 20°C under continual darkness. Each replicate container was examined daily, and the number of live polychaetes in each was recorded at this time. Routine water quality characteristics (temperature, pH, D.O., and salinity) of each treatment test solution was measured and recorded for one randomly-selected replicate per treatment each day.

After ~96 hrs, the testing was terminated and the number of live organisms in each replicate beaker was determined. The resulting test response data were statistically analyzed to determine key concentration-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS<sup>®</sup> software. These response endpoints were then compared to the typical response range established by the mean  $\pm 2$  SD of the point estimates generated by the 20 most recent previous reference toxicant tests performed by this lab. The results of this test are summarized in Section 3.2.1.



### 2.7 Modified Elutriate Test (MET) Procedures

### 2.7.1 Preparation of MET Samples

All elutriate samples were prepared as described in USACE (1985). All elutriates were prepared using a sediment slurry concentration of 150 g/L dry sediment (the dry weight basis of each homogenized sediment was determined by oven-drying a known volume of sediment). The resulting dry weight concentration of each sediment was used to calculate the volume of sediment and water that would be required to prepare an elutriate slurry at a sediment concentration of 150 g/L dry wt. basis. Each elutriate slurry was prepared by mixing site water and sediment for five minutes, followed with vigorous aeration for 1 hr in a 4-L graduated cylinder, after which any suspended material was allowed to settle for 24-hrs. After the settling period, the elutriate supernatant for each sample was collected from the cylinder by siphoning at a point midway between the water surface and settled sediment interface using clean silicone tubing. Extreme care was taken not to re-suspend any of the settled material. An aliquot of the MET supernatant was placed into pre-cleaned bottles and submitted to Eurofins Calscience, Inc. (Garden Grove, CA), as per client instruction; the remaining MET supernatant was used for initiating toxicity testing.

### 2.7.2 MET Toxicity Testing with Americamysis bahia

The MET toxicity test with *A. bahia* consists of exposing the mysids to the MET elutriate for  $\sim$  96-hrs, after which the effects on survival are determined. The specific procedures used in this testing are described below. The modified elutriate test with *A. bahia* was initiated on May 10, 2018.

The *A. bahia* used in the MET testing were obtained from a commercial supplier (Aquatic Indicators [AI], St Augustine, FL); upon receipt in the laboratory, the mysids were maintained in small tanks of 25 ppt seawater at 20°C, and were fed brine shrimp nauplii *ad libitum*.

The Lab Water Control medium for this testing consisted of 25 ppt seawater. The sediment MET elutriate was tested at the 100% elutriate only. The site water from the area where the sediments samples were collected was also tested (at the 100% concentration). Initial routine water quality characteristics (temperature, pH, D.O., total ammonia, and salinity) were measured for each treatment test solution prior to use in testing.

There were five test replicates at each treatment, each replicate consisting of a 400-mL glass beaker containing 200 mL of appropriate test solution. The testing was initiated with the allocation of 10 randomly selected 5-day old mysids into each test replicate. The test replicates were then placed into a temperature-controlled room at 20°C under a 16L:8D photoperiod.

Each day, water quality conditions were determined for one randomly selected replicate per treatment, and the test replicates were examined to determine the number of surviving organisms, with any dead organisms being removed via pipette. Each replicate was fed brine shrimp nauplii daily.

Page 6



After 96 ( $\pm 2$ ) hrs exposure, the testing was terminated, at which time the final water quality conditions were determined for one randomly selected replicate per treatment, after which each of the test replicates was examined to determine the number of surviving mysids. The resulting survival data were then statistically analyzed and key concentration-response EC point estimates determined for each site sediment elutriate using the CETIS<sup>®</sup> statistical software. The results of this testing are summarized in Section 3.3.

### 2.7.2.1 Reference Toxicant Testing of the Americamysis bahia

In order to assess the sensitivity of these test organisms to chemical stress, a reference toxicant test was performed concurrently with the elutriate test. The reference toxicant test was performed similarly to the sediment elutriate test, but used test solutions consisting of Lab Water Control medium spiked with waterborne KCl at test concentrations of 0.125, 0.25, 0.5, 1, and 2 g/L, instead of elutriate dilutions. The resulting test response data were statistically analyzed to determine key concentration-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS<sup>®</sup> software. These response endpoints were then compared to the typical response range established by the mean  $\pm 2$  SD of the point estimates generated by the 20 most-recent previous reference toxicant tests performed by this lab. The results of this test are summarized in Section 3.3.1.

11/54

### **3. BIOLOGICAL TESTING RESULTS**

There were three different biological tests performed for each site composite sample:

- 1. a 10-day sediment amphipod survival test with Leptocheirus plumulosus;
- 2. a 10-day sediment juvenile polychaete survival test with Neanthes arenaceodentata; and
- 3. a 96-hr modified elutriate mysid survival test with Americamysis bahia.

A summary table of the whole-sediment tests' water quality characteristics and sediment porewater water quality characteristics at test initiation and test termination are presented in Appendix B. Summaries of test conditions and test acceptability criteria are provided in Appendix H.

# **3.1 Effects of WETA Vallejo Ferry Terminal DU1-Comp Sediment on** *Leptocheirus plumulosus.*

The results of this test are summarized in Table 3-1. There was 100% survival in the Control sediment, indicating an acceptable survival response by the test organisms. There was no significant reduction in survival in the DU1-Comp sediment. The difference in survival in the site sediment relative to the Control sediment response was <20% indicating that this sediment was **not** toxic to amphipods.

The test data and summary of statistical analyses for this test are attached as Appendix C.

| Sediment Site | 0     | % Surviva | al in Test | Replicate | S     | Mean       |
|---------------|-------|-----------|------------|-----------|-------|------------|
| Sediment Site | Rep A | Rep B     | Rep C      | Rep D     | Rep E | % Survival |
| Lab Control   | 100   | 100       | 100        | 100       | 100   | 100        |
| DU1-Comp      | 95    | 100       | 100        | 100       | 100   | 99         |

#### Table 3-1. Leptocheirus plumulosus Survival in the Vallejo Ferry Terminal Sediment.

### 3.1.1 Reference Toxicant Toxicity to Leptocheirus plumulosus

The results of this test are presented in Table 3-2. Although the Laboratory Control survival was below acceptable limits, the LC50 for this test is consistent with the "typical response" range established by the reference toxicant test database for this species, indicating that these test organisms were responding to toxic stress in a typical fashion.

The test data and summary of statistical analyses for this test are attached as Appendix D.

| 8                                          |                      |
|--------------------------------------------|----------------------|
| KCl Treatment (g/L)                        | Mean % Survival      |
| Lab Control                                | 100                  |
| 0.25                                       | 95                   |
| 0.5                                        | 100                  |
| 1                                          | 75*                  |
| 2                                          | 0*                   |
| 4                                          | 0*                   |
| LC50 =                                     | 1.19 g/L KCl         |
| Typical Response Range (mean $\pm 2$ SD) = | 0.308 – 1.63 g/L KCl |

Table 3-2. Reference Toxicant Testing: Effects of KCl on Leptocheirus plumulosus

\* The survival response at this treatment was significantly less than the Lab Control response at p < 0.05.

# **3.2 Effects of WETA Vallejo Ferry Terminal DU1-Comp Sediment on** *Neanthes arenaceodentata*

The results of this test are summarized in Table 3-3. There was 100% survival in the Control sediment, indicating an acceptable survival response by the test organisms. There was no significant reduction in survival in DU1-Comp sediment; the difference in survival in the site sediment relative to the Control sediment response was <10% indicating that these sediments were **not** toxic to polychaetes.

The test data and summary of statistical analyses for this test are attached as Appendix E.

| Sediment Site | 0     | % Surviva | l in Test | Replicate | S     | Mean       |
|---------------|-------|-----------|-----------|-----------|-------|------------|
| Sediment Site | Rep A | Rep B     | Rep C     | Rep D     | Rep E | % Survival |
| Lab Control   | 100   | 100       | 100       | 100       | 100   | 100        |
| DU1-Comp      | 100   | 100       | 100       | 100       | 100   | 100        |

Table 3-3. Neanthes arenaceodentata Survival in the Vallejo Ferry Terminal Sediment.

13/54

### 3.2.1 Reference Toxicant Toxicity to Neanthes arenaceodentata

The results of this test are presented in Table 3-4. Although the Laboratory Control survival was below test acceptability criteria, the LC50 for this test are consistent with the "typical response" range established by the reference toxicant test database for this species, indicating that these test organisms were responding to toxic stress in a typical fashion.

The test data and summary of statistical analyses for this test are presented in Appendix F.

Mean % Survival KCl Treatment (g/L) Lab Control 100 100 0.5 1 100 2 50\* 0\* 3 4 0\* LC50 =1.86 g/L KCl Typical Response Range (mean  $\pm 2$ SD) = 1.15 – 2.51 g/L KCl

Table 3-4. Reference Toxicant Testing: Effects of KCl on Neanthes arenaceodentata.

\* The response at this test treatment was significantly less than the Control treatment response at p < 0.05.

### **3.3 Effects of WETA Vallejo Ferry Terminal DU1-Comp Modified Elutriate on** *Americamysis bahia*

The results of this test are summarized below in Table 3-5. There was 100% survival in the Lab Control treatment, indicating acceptable survival responses by the test organisms; there was 100% survival in the Site Water treatment. There was no significant reduction in survival in DU1-Comp modified elutriate indicating that this modified elutriate was **not** toxic to mysids.

The test data and summary of statistical analyses for this test are attached as Appendix G.

| <b>9 1</b>     | <i>v</i>        |
|----------------|-----------------|
| Test Treatment | Mean % Survival |
| Lab Control    | 100             |
| Site Water     | 100             |
| DU1-Comp       | 100             |

### Table 3-5. Effects of the Vallejo Ferry Terminal Modified Elutriate on Americamysis bahia.

14/54

### 3.3.1 Reference Toxicant Toxicity to Americamysis bahia

The results of this test are summarized in Tables 3-6. The LC50 for this test was consistent with the "typical response" range established by the reference toxicant test database for this species, indicating that these test organisms were responding to toxic stress in a typical fashion.

The test data and summary of statistical analyses for this test are attached as Appendix H.

| Table 5-0. Reference Toxicant Testing. I   | enects of KCI on Americanysis bunda. |
|--------------------------------------------|--------------------------------------|
| KCl Treatment (g/L)                        | Mean % Survival                      |
| Lab Control                                | 100                                  |
| 0.125                                      | 97.5                                 |
| 0.25                                       | 97.5                                 |
| 0.5                                        | 77.5                                 |
| 1                                          | 0*                                   |
| 2                                          | 0*                                   |
| LC50 =                                     | 0.61 g/L KCl                         |
| Typical Response Range (mean $\pm 2$ SD) = | 0.31 – 0.70 g/L KCl                  |

Table 3-6. Reference Toxicant Testing: Effects of KCl on Americamysis bahia.

\* The response at this test treatment was significantly less than the Control treatment response at p < 0.05.

### 3.4 Biological Testing QA/QC Summary

The biological testing of WETA Vallejo Ferry Terminal sediment incorporated standard QA/QC procedures to ensure that the test results were valid, including the use of negative Lab Controls, positive Lab Controls, test replicates, and measurements of water quality during testing.

Quality assurance procedures that were used for sediment testing are consistent with methods described in the U.S.EPA/USACE (1998). Sediments for the bioassay testing were stored appropriately at  $\leq$ 4°C and were used within the eight-week holding time period. Sediment interstitial water characteristics were within test acceptability limits at the start of the tests. Sediment elutriates were prepared using site water. The toxicity test overlying waters consisted of high-quality natural seawater.

All measurements of routine water quality characteristics were performed as described in the PER Lab Standard Operating Procedures (SOPs). All biological testing water quality conditions were within the appropriate limits. Laboratory instruments were calibrated daily according to Lab SOPs, and calibration data were logged and initialed.

**Negative Lab Control** – The biological responses for test organisms at the negative Lab Control treatments were within acceptable limits for the sediment testing.

Page 11

**Positive Lab Control** –The results of the reference toxicant tests were consistent with the "typical response" ranges established by the respective reference toxicant test databases for these species, indicating that the test organisms were responding to toxic stress in a typical and consistent fashion.

**Concentration Response Relationships** – The concentration-response relationships for the reference toxicant tests were evaluated as per EPA guidelines (EPA-821-B-00-004) and were determined to be acceptable.

16/54

### 4. REFERENCES

ASTM (2016) Method E1367-99. Standard Guide for conducting 10 day static toxicity tests with marine and estuarine amphipods. ASTM Standards on Biological Effects and Environmental Fate. American Society for Testing and Materials, Philadelphia, PA.

ASTM (2016) Method E1611-00. Standard Guide for conducting sediment tests with marine and estuarine polychaetous annelids. ASTM Standards on Biological Effects and Environmental Fate. American Society for Testing and Materials, Philadelphia, PA.

USEPA (1994) 'Methods for Assessing the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Amphipods', EPA-600/R-94/025. U.S. EPA, Env. Research Laboratory, Narragansett, RI.

USACE (1985) USACE Technical Note EEDP-04-02. Interim Guidance for Predicting Quality of Effluent Discharged from Confined Dredged Material Disposal Areas-Test Procedures. U.S. Army Corps of Engineers, US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS.

USACE (2001) Public Notice 01-01. DMMO Guidelines for Implementing of the Inland Testing Manual in the San Francisco Bay Region. U.S. Army Corps of Engineers, US Army Corps of Engineers Operations and Readiness Branch, San Francisco, CA.

USEPA/USACE (1998) Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual (Inland Testing Manual). U.S. Environmental Protection Agency/U.S. Army Corps of Engineers. EPA/823/B-94/002. Office of Water. Washington, DC 20460.

USEPA (2002) 'Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms', fifth edition, EPA/821/R-02/012. U.S. EPA, Environmental Office of Research and Development, Washington DC.

17/54

## Appendix A

## Chain-of-Custody Records for the Collection and Delivery of WETA Vallejo Ferry Terminal DU1-Comp Sediment

### CHAIN OF CUSTODY RECORD

| Pac        | ific EcoRisk                                                           |                       |              |                  |           |                 |           |                | -wo                                 | FTLAB.                              | USE ON             | LY                                         |         |            |        | D٨      | \TE:          |     | 05/    | /03/18        | 8              |
|------------|------------------------------------------------------------------------|-----------------------|--------------|------------------|-----------|-----------------|-----------|----------------|-------------------------------------|-------------------------------------|--------------------|--------------------------------------------|---------|------------|--------|---------|---------------|-----|--------|---------------|----------------|
|            | della Road - Fairfield, CA 94534<br>er service / sample drop off infor | mation, contact us at | 707-207-7760 | ) or 707-207-776 | 51        |                 |           |                |                                     |                                     |                    |                                            |         |            |        | PA      | GE:           |     | 1      |               | 1              |
|            | TORY CLENT:                                                            | Dyke & Associate      |              |                  |           |                 |           | -              | CLIE                                | NT PRO                              | JECT N             | AME / N                                    | VUMBER: |            |        | -       |               |     |        | 2.Q. N        | IO.:           |
| ADDRES     |                                                                        | byne a naadolate      | ia 1910.     |                  |           |                 |           | _              | W                                   | ETA                                 |                    |                                            |         |            |        |         |               |     | 0      | J017S         | 414.10         |
| ~~~~~      | 10 Commercial Blvd S                                                   | uite 100              |              |                  |           |                 |           |                | PRO                                 | JECT C                              | ONTACT             | ;                                          |         | -          |        |         |               |     | -      | SAMPI         | LER(S): (PRIN  |
| CITY:      | Novato                                                                 |                       |              | STATE:           | CA        | <sup>9494</sup> | 9         |                | W                                   | endy F                              | locha              |                                            |         |            |        |         |               |     |        |               | en<br>ant/Mark |
| TEL:       | 508-762-0777                                                           | E-MAIL:               | ndy.rocha    | @foth.com        |           |                 |           |                |                                     |                                     |                    |                                            | REQ     | UEST       | ΓED    | AN/     | ٩LY           | SES |        |               |                |
| TURNAR     | ROUND TIME (Rush surcharges may ap                                     |                       |              |                  |           |                 |           |                |                                     |                                     | PI                 | _                                          | check b | ox or fill | in bla | nk as r | needec        | d.  |        |               |                |
| D SA       |                                                                        | 1 48 HR 🗆 72          | HR DS        | DAYS E           | 3 STAND   | -               |           |                | Test                                | Tes                                 | // uo              | 0 %0                                       |         |            |        |         |               |     |        |               |                |
|            | GLOBAL ID:                                                             |                       |              |                  |           | LOG             | CODE:     |                | , podit                             | chaete                              | or fish test on    | fish 10(                                   |         |            |        |         |               |     |        |               |                |
| SPECIAI    | INSTRUCTIONS:                                                          |                       |              |                  |           |                 |           |                | Amp                                 | Poly                                | st fis             | s or                                       |         |            |        |         |               |     |        |               |                |
| Coord      | linate MET testing with Calsc                                          | ience                 |              |                  |           | L .             |           |                | ent,                                | fent                                |                    | fysid                                      |         |            |        | - 1     |               |     |        |               |                |
|            |                                                                        |                       |              |                  |           |                 |           |                | edim                                | edim                                | ۶<br>ش             | vith N                                     |         |            |        |         |               |     |        |               |                |
|            |                                                                        |                       |              |                  |           | Unpreserved     | hed       | Field Filtered | 10-day whole sediment Amphipod Test | 10-day whole sediment PolychaeteTes | MET/EET 100% mysld | Site Water Test with Mysids or fish 100% o |         |            |        |         |               |     |        |               |                |
| LAB<br>USE | SAMPLE ID                                                              | SAMP                  | LING         | MATRIX           | NO.<br>OF | bres            | Preserved | 10             | day                                 | day .                               | 1/E                | Wat                                        |         |            |        |         |               |     |        |               |                |
| ONLY       |                                                                        | DATE                  | TIME         |                  | CONT.     | 5               | đ         | j.             | Ģ                                   | ¢                                   | E E                | Site                                       |         |            | _      |         | $\rightarrow$ |     | _      |               |                |
|            | DU-1 Composite                                                         | 5/3/2018              | 900          | SOIL             | 1-5Gai    | X               |           |                | 1                                   | 1                                   | 1                  |                                            |         |            |        |         |               |     |        |               |                |
|            | DU-1                                                                   | 5/2/2018              | 1400         | Water            | 2         | X               |           |                |                                     |                                     |                    | 1                                          |         |            |        |         |               |     |        |               |                |
|            |                                                                        |                       |              |                  |           |                 |           |                |                                     |                                     |                    |                                            |         |            |        |         |               |     |        |               | -              |
|            |                                                                        |                       |              |                  |           |                 |           |                |                                     |                                     |                    |                                            |         |            |        |         |               |     |        |               |                |
|            |                                                                        |                       |              |                  |           |                 |           |                |                                     |                                     |                    |                                            |         |            |        |         |               |     |        |               |                |
|            |                                                                        |                       |              |                  |           |                 |           |                |                                     |                                     |                    |                                            |         |            |        |         | -             |     |        |               |                |
|            |                                                                        |                       |              |                  |           |                 |           |                |                                     |                                     |                    |                                            |         |            |        |         |               |     |        |               |                |
|            |                                                                        |                       |              |                  |           |                 |           |                |                                     |                                     |                    |                                            |         |            | +      |         | +             | -   | +      | -             | -              |
|            |                                                                        |                       |              |                  |           |                 | -         |                |                                     | -                                   |                    | -                                          |         |            | +      | -       | +             | +   | +      | +             |                |
|            |                                                                        |                       |              |                  |           |                 |           |                |                                     |                                     | -                  | 1                                          |         | -          | +      | -       | +             | +   | +      | +             |                |
| Relinqui   | shed by: (Signature)                                                   |                       |              |                  | Rec       | eived b         | y: (Sigr  | hature/A       | filiatio                            | n)                                  |                    | -                                          | -       | _          | _      | _       |               | -   | Date:  | $\rightarrow$ | Time:          |
| An         | et my                                                                  |                       |              |                  | Y         | 14              | an        | lin            | 9                                   |                                     |                    |                                            |         |            |        |         |               |     | -May-1 |               | 1204           |
| Relinqui   | s d by: (Signature)                                                    |                       |              |                  | Rec       | eived b         | y: (Sigr  | natu (4)A      | filiatio                            | n)                                  |                    |                                            |         |            |        |         |               |     | Date:  | _             | Time:          |
| Reiinqu    | shed by: (Signature)                                                   |                       |              |                  | Rec       | eived b         | y. (Sigr  | hature/A       | filiatio                            | m)                                  |                    |                                            | _       |            |        |         |               | +   | Date:  | +             | Time:          |
|            |                                                                        |                       |              |                  |           |                 |           |                |                                     |                                     |                    |                                            |         |            |        |         |               |     |        |               |                |

## Appendix **B**

## Whole Sediment Test Porewater and Water Quality Characteristics of Overlying Water

| Leptocheurus plumulosus Benthic Toxicity Test. |      |                   |                           |                         |
|------------------------------------------------|------|-------------------|---------------------------|-------------------------|
| Sample ID                                      | pН   | Salinity<br>(ppt) | Total Ammonia<br>(mg/L N) | Total Sulfide<br>(mg/L) |
| Lab Control                                    | 7.37 | 23.4              | 2.19                      | 0.065                   |
| DU1-Comp                                       | 7.31 | 20.3              | 8.93                      | 0.069                   |

# Table B-1. Sediment Porewater Test Initiation Water Quality Characteristics for Leptocheirus plumulosus Benthic Toxicity Test.

| Table B-2. Sediment Porewater Test Termination Water Quality Characteristics for |
|----------------------------------------------------------------------------------|
| Leptocheirus plumulosus Benthic Toxicity Test.                                   |

| Sample ID   | pН   | Salinity<br>(ppt) | Total Ammonia<br>(mg/L N) | Total Sulfide<br>(mg/L) |
|-------------|------|-------------------|---------------------------|-------------------------|
| Lab Control | 7.04 | 28.1              | <1.00                     | 0.032                   |
| DU1-Comp    | 6.97 | 27.7              | 2.88                      | 0.041                   |

# Table B-3. Sediment Overlying Water Total Ammonia Concentrations for Leptocheirus plumulosus Benthic Toxicity Test.

| Sample ID   | Total Ammonia (mg/L N) |                  |  |
|-------------|------------------------|------------------|--|
|             | Test Initiation        | Test Termination |  |
| Lab Control | <1.00                  | <1.00            |  |
| DU1-Comp    | <1.00                  | <1.00            |  |

### Table B-4. Sediment Porewater Test Initiation Water Quality Characteristics for Neanthes arenaceodentata Benthic Toxicity Test.

| Sample ID   | pН   | Salinity<br>(ppt) | Total Ammonia<br>(mg/L N) | Total Sulfide<br>(mg/L) |
|-------------|------|-------------------|---------------------------|-------------------------|
| Lab Control | 7.65 | 26.7              | 1.33                      | 0.061                   |
| DU1-Comp    | 7.49 | 26.5              | 13.7                      | 0.175                   |

## Table B-5. Sediment Porewater Test Termination Water Quality Characteristics for Neanthes arenaceodentata Benthic Toxicity Test.

| Sample ID   | pН   | Salinity<br>(ppt) | Total Ammonia<br>(mg/L N) | Total Sulfide<br>(mg/L) |
|-------------|------|-------------------|---------------------------|-------------------------|
| Lab Control | 7.30 | 28.2              | <1.00                     | 0.044                   |
| DU1-Comp    | 7.30 | 27.6              | <2.00                     | 0.052                   |

Īī

### Table B-6. Sediment Overlying Water Total Ammonia Concentrations for Neanthes arenaceodentata Test.

| Sample ID   | Total Ammonia (mg/L N) |                  |  |
|-------------|------------------------|------------------|--|
|             | Test Initiation        | Test Termination |  |
| Lab Control | <1.00                  | <1.00            |  |
| DU1-Comp    | <1.00                  | <1.00            |  |

### Table B-7. Total Ammonia Concentration for Modified Elutriate Test (MET) Sample.

| Sample ID | Total Ammonia (mg/L N) |
|-----------|------------------------|
| DU1-Comp  | 3.75                   |



# Appendix C

# Test Data and Summary of Statistics for the Toxicity Evaluation of the Vallejo Ferry Terminal DU1-Comp Sediment with the Amphipod, *Leptocheirus plumulosus*

#### **CETIS Summary Report**

Report Date:

12 Jun-18 08:28 (p 1 of 1) Test Code: FVFT\_0518LP\_C1 | 07-3169-2557

|                                |                                                                                                                       |                          |          |                                                                                                                                   |           |          |                        |                   |       | 1000                       | coue.      |                                                           | ** 1 ****** | SLF_CITU     | -0.503-2001 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|----------|------------------------|-------------------|-------|----------------------------|------------|-----------------------------------------------------------|-------------|--------------|-------------|
| 10 Day Marine/                 | Estu                                                                                                                  | arine Sedii              | ment T   | est                                                                                                                               |           |          |                        |                   |       |                            |            |                                                           |             | Pacifi       | : EcoRisk   |
| Start Date:                    | Start Date:         31 May-18 10:37           Ending Date:         10 Jun-18 12:56           Duration:         10d 2h |                          |          | Test Type: Survival<br>Protocol: ASTM E1367-99 (Amphipoo<br>Species: Leptocheirus plumulosus<br>Source: Aquatic Research Organism |           |          |                        | ,                 |       | Апа<br>Dilu<br>Brin<br>Age | ent:<br>e: | Simin Delijani<br>Not Applicable<br>Not Applicable<br>N/A |             |              |             |
|                                |                                                                                                                       |                          | <u> </u> |                                                                                                                                   | -         |          | -                      |                   |       | -                          |            |                                                           |             |              |             |
| Sample Code                    |                                                                                                                       | Sample ID                |          | Sample Dat                                                                                                                        |           | Receip   |                        | Sample            |       |                            | nt Name    | 3                                                         |             | oject        |             |
| FVFT_0518LP_<br>DU1-COMP       | •                                                                                                                     | 12-8715-58<br>09-8853-32 |          | 31 May-18<br>03 May-18 (                                                                                                          |           |          | -18 10:37<br>-18 12:04 | n/a (25<br>28d 21 |       |                            | (CLE)      |                                                           | 28          | 839          |             |
| Sample Code                    |                                                                                                                       | Material Ty              | /pe      |                                                                                                                                   | Sample    | Sourc    | e                      |                   | Stati | on Locat                   | on         | ł                                                         | Lat/Long    |              |             |
| FVFT_0518LP_                   | C1                                                                                                                    | Sediment                 |          |                                                                                                                                   | Vallejo F | eny T    | erminal                |                   | LABO  | 2A                         |            |                                                           |             |              |             |
| DU1-COMP                       |                                                                                                                       | Sediment                 |          |                                                                                                                                   | Vallejo F | Ferry To | erminal                |                   | DU1   |                            |            |                                                           |             |              |             |
| Single Compar<br>Analysis ID E | rison<br>Endp                                                                                                         |                          |          | Сотр                                                                                                                              | arison N  | lethod   |                        |                   |       | P-Value                    | Comp       | ariso                                                     | n Result    |              |             |
| 08-8401-8806                   | Surviv                                                                                                                | al Rate                  |          | Wilco                                                                                                                             | kon Rank  | Sum 1    | ſwo-Sampie             | e Test            |       | 0.5000                     | DU1-(      | COMP                                                      | passed s    | urvival rate |             |
| Survival Rate S                | Sumn                                                                                                                  | nary                     |          | ~~~~~                                                                                                                             |           |          |                        |                   |       | ******                     |            |                                                           |             |              |             |
| Sample                         |                                                                                                                       | Code                     | Count    | Mean                                                                                                                              | 95%       | 6 LCL    | 95% UCL                | Min               |       | Max                        | Std E      | rr s                                                      | Std Dev     | CV%          | %Effect     |
| FVFT_0518LP_                   | C1                                                                                                                    | CS                       | 5        | 1.000                                                                                                                             | 1.0       | 00       | 1.000                  | 1.000             |       | 1.000                      | 0.000      | (                                                         | 0.000       | 0.00%        | 0.00%       |
| DU1-COMP                       |                                                                                                                       | ,,                       | 5        | 0.990                                                                                                                             | 0.9       | 62       | 1.000                  | 0.950             |       | 1.000                      | 0.010      | {                                                         | ).022       | 2.26%        | 1.00%       |
| Survival Rate D                | Detail                                                                                                                |                          |          |                                                                                                                                   |           |          |                        |                   |       |                            |            |                                                           |             |              |             |
| Sample                         |                                                                                                                       | Code                     | Rep 1    | Rep 2                                                                                                                             | Re        | o 3      | Rep 4                  | Rep 5             |       |                            |            |                                                           |             |              |             |
| FVFT_0518LP_                   | C1                                                                                                                    | CS                       | 1.000    | 1.000                                                                                                                             | 1.0       | 00       | 1.000                  | 1.000             |       |                            |            |                                                           |             |              |             |
| DU1-COMP                       |                                                                                                                       |                          | 0.950    | 1.000                                                                                                                             | 1.0       | 00       | 1.000                  | 1.000             |       |                            |            |                                                           |             |              |             |
| Survival Rate E                | Binon                                                                                                                 | nials                    |          |                                                                                                                                   |           |          |                        |                   |       |                            |            |                                                           |             |              |             |
| Sample                         |                                                                                                                       | Code                     | Rep 1    | Rep 2                                                                                                                             | Rej       | 3        | Rep 4                  | Rep 5             | ;     |                            |            |                                                           |             |              |             |
| FVFT_0518LP_                   | C1                                                                                                                    | CS                       | 20/20    | 20/20                                                                                                                             | 20/       | 20       | 20/20                  | 20/20             |       |                            |            |                                                           |             |              |             |
| DU1-COMP                       |                                                                                                                       |                          | 19/20    | 20/20                                                                                                                             | 20/       | 20       | 20/20                  | 20/20             |       |                            |            |                                                           |             |              |             |

:

Analyst:\_\_\_\_\_\_QA:\_\_\_\_\_

| CETIS Analy        | tical Rep                      | ort          |              |                            | 1          | ort Date:<br>Code: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 29 (p 1 of 1<br>)7-3169-255 |       |             |
|--------------------|--------------------------------|--------------|--------------|----------------------------|------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|-------|-------------|
| 10 Day Marine/E    | stuarine Sed                   | liment Test  | t            |                            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             | Paci  | ific EcoRis |
|                    | 06-0806-5548<br>12 Jun-18 8:29 |              | *            | rvival Rate<br>nparametric | -Two Sampl | 8                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S Version |                             | 1.9.2 |             |
| Data Transform     |                                | Alt Hyp      |              |                            |            |                    | Comparis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on Resul  | t                           |       | PMSD        |
| Angular (Correcte  | ed)                            | C > T        |              |                            |            |                    | DU1-CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IP passed | survival rate               |       | 2.36%       |
| Wilcoxon Rank      | Sum Two-Sa                     | mple Test    |              |                            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| Sample I vs        | Sample I                       | I            | Test Stat    | Critical                   | Ties DF    | P-Type             | P-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Decisio   | n(a:5%)                     |       |             |
| Control Sed        | DU1-COA                        | ЛР           | 25           | n/a                        | 1 8        | Exact              | 0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Non-Sig   | nificant Effec              | t     |             |
| ANOVA Table        | <sup>1</sup>                   |              |              |                            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ·····                       |       |             |
| Source             | Sum Squ                        | ares         | Mean Sq      | uare                       | DF         | F Stat             | P-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Decision  | n(a:5%)                     |       |             |
| Between            | 0.001287                       |              | 0.001287     |                            | 1          | 1                  | 0.3466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | nificant Effec              | <br>t |             |
| Error              | 0.010301                       | 4            | 0.001287     | 7                          | 8          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |                             |       |             |
| Total              | 0.011589                       | 1            |              |                            | 9          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| Distributional Te  | ests                           |              | ~~~~~        |                            |            |                    | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                             |       |             |
| Attribute          | Test                           |              |              |                            | Test Stat  | Critical           | P-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Decision  | n(a:1%)                     |       |             |
| Variances          | Levene E                       | quality of V | ariance Test | ****                       | 7.11       | 11.3               | 0.0285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Equal Va  | riances                     |       |             |
| Variances          | Mod Leve                       | ne Equality  | of Variance  | Test                       | 1          | 13.7               | 0.3559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Equal Va  | iniances                    |       |             |
| Distribution       | Shapiro-V                      | Vilk W Nom   | nality Test  |                            | 0.625      | 0.741              | 1,1E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Non-Nor   | mal Distribut               | ion   |             |
| Survival Rate Su   | immary                         |              |              |                            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| Sample             | Code                           | Count        | Mean         | 95% LCL                    | 95% UCL    | Median             | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max       | Std Err                     | CV%   | %Effect     |
| FVFT_0518LP_C      | 1 CS                           | 5            | 1.000        | 1.000                      | 1.000      | 1.000              | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000     | 0.000                       | 0.00% | 0.00%       |
| DU1-COMP           |                                | 5            | 0.990        | 0.962                      | 1.000      | 1.000              | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000     | 0.010                       | 2.26% | 1.00%       |
| Angular (Correc    | ted) Transfor                  | med Sumr     | mary         |                            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| Sample             | Code                           | Count        | Mean         | 95% LCL                    | 95% UCL    | Median             | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max       | Std Err                     | CV%   | %Effect     |
| FVFT_0518LP_C      | 1 CS                           | 5            | 1.46         | 1.46                       | 1.46       | 1.46               | 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.46      | 0                           | 0.00% | 0.00%       |
| DU1-COMP           |                                | 5            | 1.44         | 1.37                       | 1.5        | 1.46               | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.46      | 0.0227                      | 3.53% | 1.56%       |
| Graphics           |                                |              |              |                            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| 10                 | Ŷ                              |              |              |                            |            | 0.050              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
|                    | *                              |              | <u> </u>     |                            |            | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| 0.0                |                                |              |              |                            |            | G.02\$ ····        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | • • •                       | 5 6   |             |
| 6.0                |                                |              |              |                            |            | :                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :         |                             |       |             |
| 0.7 ·              |                                |              |              |                            | 3          | ž c.068 ····       | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 0                           | _     |             |
| 3.0                |                                |              |              |                            | Centerred  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| Rate               |                                |              |              |                            | U          | ₽<br>-0,025 ···    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| State 1.5          |                                |              |              |                            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| អ៊ី ១ <u>.</u> 4 · |                                |              |              |                            |            | -0.050             | d and a second s |           |                             |       |             |
| 93 ·               |                                |              |              |                            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| 0.2                |                                |              |              |                            |            | -5.075 -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :         |                             |       |             |
| :                  |                                |              |              |                            |            | - 9-047 (F         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |
| 0.1                |                                |              |              |                            |            | -6.109             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                             |       |             |
|                    |                                |              |              |                            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |       |             |

Analyst: SD QA: M

|             | 10-Da              | y Estuar      | ine/Mar     | ine Sedir      | nent Tox                | cicity Te                  | st Data                                              |
|-------------|--------------------|---------------|-------------|----------------|-------------------------|----------------------------|------------------------------------------------------|
| Client      | Form: Val          | lejo Ferry    | Terminal    | Test ID#:      |                         | ) D                        | Date (Day 0): 5/31/18                                |
| Species:    | Lepto              | cheirus plumu | losus       |                | 788411/39               | i Organi:                  | sm Supplier: ARO                                     |
|             |                    |               |             |                | Organisn                | n Log # :                  | 10988                                                |
| Day of      | Test               | La            | ub Contr    | ol (Parac      | lise Cove               | e)                         | Sign-Off                                             |
| Test        | Replicate          | Temp (°C)     | pН          | D.O. (mg/L)    | Salinity (ppt)          | # Alive                    |                                                      |
|             | Rep A              | 25.8          | 7.72        | 7.1            | 21-0                    | 20                         | Date: 5/37/18                                        |
|             | Rep B              | 25.8          | 7:70        | 7-1            | 21.3                    | 20                         | Time: 1037                                           |
| Day 0       | Rep C              | 25.8          | 7 70        | 7.2            | 20.9                    | 20                         | WQ: T4                                               |
|             | Rep D              | 25.6          | 7.71        | 71             | 20.7                    | 20                         | Scientist Initiation: J                              |
|             | Rep E              | 25.6          | 7.70        | 7-7-           | 21.0                    | 20                         | Scientist Confirmation:                              |
| Day 1       | Rep A              | 25.8          | 7.84        | 7.3            | 21.7                    |                            | Date: 611/19 Time:<br>WO: 3773 1122                  |
| Day 2       | Rep B              | 26.0          | 7.75        | 7.1            | 21.0                    |                            | Date: 6/2/18 Time:<br>WO: 1991 119                   |
| Day 3       | Rep C              | 26.1          | 7,95        | 7.1            | 20.1                    |                            | WO: 1992 1119<br>Date: 6/3/18 Time:<br>WO: 1994 0914 |
| Day 4       | Rep D              | 25.1          | \$.03       | 7.3            | 20 B                    |                            | Date: 4141.8 Time: 092.8<br>WO: 0H                   |
| Day 5       | Rep E              | 261           | 8.03        | 7.2            | 21.6                    |                            | Date: G 15 118 Time: 0995                            |
| Day 6       | Rep A              | 210.1         | 7.95        | 7.1            | 21.1                    |                            | WO: 53 0440<br>Date: U/U/18 Time:<br>WO: NO 1411     |
| Day 7       | Rep B              | 26.0          | 8.02        | 7.5            | 21.6                    |                            | WO: 1/17 Time:<br>WO: 377 (1411                      |
| Day 8       | Rep C              | 25.0          | 12.99       | 7.5            | 20.3                    |                            | Date: 61518 Time:0950                                |
| Day 9       | Rep D              | 25.2          | 8.01        | 7.2            | 20.1                    |                            | Date: 6/9/18 Time:<br>WO: MML 1428                   |
|             | Rep A              | 260           | 7.86        | 7.1            | 21.1                    | 20                         | Date: Chois                                          |
|             | Rep B              | 26.3          | 7.82        | 7.2            | 21.4                    | 20                         | Time: 1256                                           |
| Day 10      | Rep C              | 26.3          | 7.78        | 7.2            | 1.15                    | 10                         | WQ:<br>D14                                           |
|             | Rep D              | 25.q          | 7.87        | 7.1            | 21.4                    | 20                         | Scientist Counts:                                    |
|             | Rep E              | 25.9          | 7.77        | 7.1            | 21.5                    | 20                         |                                                      |
| Day of Test | Matrix             | рН            | D.O. (mg/L) | Salinity (ppt) | Total Sulfide<br>(mg/L) | Total<br>Ammonia<br>(mg/L) | Sign-Off                                             |
|             | Porewater          | 7.37          | 5.1         | 23.4           | 0.065                   | 2.14                       | Date: 51 31/18 Isme: 1416<br>WQ: F1                  |
| Day 0       | Overlying<br>Water |               |             |                |                         | 21-00                      | Date:5/31/18 Time: 1230<br>WQ: 7A-                   |
| 8           | 1                  | E             | F           | 1              | 1                       | E                          |                                                      |

RDIJ

5.8

RD10

8013

28.1

FLIZ

DRYUUU

0.032

DEADOD

DR3800

64.00

41.00

DR-3800

Date: 61.61.8

Date: 6140118

WQ: 014

WQ: pri

Time: 15 +5

Time: 1430

PHZY

7.04

PHIS

Meter ID

Porewater

Overlying

Water

Meter ID

Day 10

#### **10-Day Estuarine/Marine Sediment Toxicity Test Data**

| Client:                               | Foth (CLE          | E): Vallejo Fer | ry Terminal | Test ID#:      | 78445          | I.                | Date (Day 0): 5/31/18                                                                                                                                                                      |
|---------------------------------------|--------------------|-----------------|-------------|----------------|----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species:                              | Lepto              | cheirus plumi   | alosus      | Project #:     | 28839          |                   | sm Supplier: ARO                                                                                                                                                                           |
|                                       |                    |                 |             |                | Organis        | m Log # :         | 10988                                                                                                                                                                                      |
| Day of                                | Test               |                 | DU-         | 1 Comp         | osite          |                   | Sign-Off                                                                                                                                                                                   |
| Test                                  | Replicate          | Temp (°C)       | pН          | D.O. (mg/L)    | Salinity (ppt) | # Alive           |                                                                                                                                                                                            |
|                                       | Rep A              | 25.6            | 7.67        | 7.0            | 20.9           | 20                | Date: 5/31/18                                                                                                                                                                              |
|                                       | Rep B              | 25.5            | 7.63        | 7.2            | 20.9           | 20                | Time: 1041                                                                                                                                                                                 |
| Day 0                                 | Rep C              | 25-4            | 7.63        | 7.2            | 20-8           | 20                | WQ: TA                                                                                                                                                                                     |
|                                       | Rep D              | 25.1            | 7-63        | 7-1            | 21-1           | 20                | Scientist Initiation                                                                                                                                                                       |
|                                       | Rep E              | 25.2            | 7.67        | 7-1            | 21-1           | <u>20</u>         | Scientist Confirmation                                                                                                                                                                     |
| Day 1                                 | Rep A              | 25.9            | 7.80        | 7.1            | 21.2           |                   | Date:61(11) Time:<br>WO: 57/9 1122                                                                                                                                                         |
| Day 2                                 | Rep B              | 25.3            | 7.83        | 7.3            | 211            |                   | Date: 6/2/(8 Time:<br>WO: 7036 1120                                                                                                                                                        |
| Day 3                                 | Rep C              | 25.7            | 7.92        | 7.2            | 20.4           |                   | WO: 1946 11.20<br>Date: 6/3/18 Time:<br>WO: 1944 0916<br>Date: 64/15 Time: 0928                                                                                                            |
| Day 4                                 | Rep D              | 25.2            | 7.89        | 7.0            | 203            |                   | Date: 6 4/15 Time: 0728                                                                                                                                                                    |
| Day 5                                 | Rep E              | 25.9            | 7-96        | 7-1            | 20.3           |                   | $\frac{WQ}{Date: \mathcal{C}/\mathcal{B}} \xrightarrow{\text{Time:}}{OPeg}$ $WQ: \mathcal{SB} \xrightarrow{\sim} OPeg$                                                                     |
| Day 6                                 | Rep A              | 25.8            | 7.204       | 7.1            | 20.4           |                   | Date: Latig Dis Time: 1615                                                                                                                                                                 |
| Day 7                                 | Rep B              | 25.7            | 7.93        | 7.5            | 20.1           |                   | WQ:         1412           Date:         (1711)7         Time:           WQ:         地方本         0430           Date:         (1712)7         Time:           WQ:         地方本         0430 |
| Day 8                                 | Rep C              | 25.3            | $X \cap T$  | 7.5            | 20.7           |                   | WQ: FXAF                                                                                                                                                                                   |
| Day 9                                 | Rep D              | 25,4            | 7.81        | 7.1            | F1.7           |                   | Date: 6/9/18 Time:<br>WO: My 1429                                                                                                                                                          |
|                                       | Rep A              | 26.2            | 7.18        | 7.6            | 19.7           | 19                | Date: 6110118                                                                                                                                                                              |
|                                       | Rep B              | 26.0            | 7.77        | 7.0            | 20.5           | 20                | Time:<br>1302                                                                                                                                                                              |
| Day 10                                | Rep C              | 25.8.           | 7.75        | 7.2            | 20.9           | 20                | WV: DH                                                                                                                                                                                     |
|                                       | Rep D              | 25.8            | 7.72        | 7.1            | 20.2           | 20                | Scientist Counts:                                                                                                                                                                          |
|                                       | Rep E              | 25.8            | 7.77        | 7,1            | 20.4           | 20                |                                                                                                                                                                                            |
|                                       |                    |                 |             |                | Total Sulfide  | Total             |                                                                                                                                                                                            |
| Day of Test                           | Matrix             | pН              | D.O. (mg/L) | Salinity (ppt) | (mg/L)         | Ammonia<br>(mg/L) | Sign-Off                                                                                                                                                                                   |
|                                       | Porewater          | 7.31            | 5.8         | 20.3           | 0.069          | 8.93              | Date: 5/31/18 Time: 14/6<br>WQ: F1                                                                                                                                                         |
| Day 0                                 | Overlying<br>Water |                 |             |                |                | 4(-GD             | Date: 5/31/18 Time: (2-30)<br>WQ: 7A                                                                                                                                                       |
|                                       | Meter ID           | PMZM            | RDIJ        | Ecrs           | DR4000         | PR 3800           |                                                                                                                                                                                            |
| · · · · · · · · · · · · · · · · · · · | Porewater          | 6.97            | 5.9         | 27.7           | 0.041          | 2.88              | Date: 6/10/18 Time: 15 45<br>WQ: Drf                                                                                                                                                       |
| Day 10                                | Overlying<br>Water |                 |             |                |                | 61.00             | Date: Cholig Time: 1+30<br>WQ: DH                                                                                                                                                          |
|                                       | Meter ID           | рніз            | ROIG        | EC13           | DRHUOU         | DR.3800           |                                                                                                                                                                                            |

## **Appendix D**

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Amphipod, *Leptocheirus plumulosus* 

| CETIS Sur                                             | nmary Rep                                                         | ort                                                         |                                                            |                                                                    |                                                               |                                                            | oort Date:<br>t Code:                            | 07                                                           | Jun-18 16:1<br>78387   09                                                |                                         |                                                       |                   |
|-------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-------------------|
| Acute Amphi                                           | pod Survival To                                                   | est                                                         |                                                            |                                                                    |                                                               |                                                            |                                                  |                                                              |                                                                          | Pacifi                                  | c EcoR                                                | isk               |
| Batch ID:<br>Start Date:<br>Ending Date:<br>Duration: | 08-9345-4384<br>31 May-18 16:4<br>04 Jun-18 15:1<br>95h           | 40<br>8                                                     | Test Type:<br>Protocol:<br>Species:<br>Source:             | Survival (96h)<br>EPA/600/R-01/<br>Leptocheirus p<br>Aquatic Resea | lumulosus                                                     | ms, NH                                                     |                                                  | ient: C<br>ne: N                                             | Vike McElroy<br>Diluted Seawate<br>Vot Applicable<br>VA                  | er                                      |                                                       |                   |
|                                                       | 10-2206-7715<br>31 May-18 16:4<br>31 May-18 16:4<br>n/a (25.2 °C) | 40<br>40                                                    | Code:<br>Material:<br>Source:<br>Station:                  | KCI<br>Potassium chlo<br>Reference Toxi<br>In House                |                                                               |                                                            | Clie<br>Pro                                      |                                                              | Reference Toxic<br>28912                                                 | cant                                    |                                                       |                   |
| Analysis ID                                           | parison Summ<br>Endpoint<br>96h Survival Ra                       |                                                             |                                                            | arison Method<br>It Multiple Com                                   |                                                               | t                                                          | NOEL<br>0.5                                      | LOEL<br>1                                                    | TOEL<br>0.7071                                                           | TU                                      | PMSE<br>10.0%                                         |                   |
| Point Estimat<br>Analysis ID<br>13-5145-5761          | e Summary<br>Endpoint<br>96h Survival Ra                          | ate                                                         |                                                            | Estimate Metho<br>ed Spearman-K                                    |                                                               |                                                            | Level<br>EC50                                    | <b>g/L</b><br>1.19                                           | 95% LCL<br>1.03                                                          | <b>95% UCL</b><br>1.37                  | τu                                                    | ~                 |
| 96h Survival I                                        | Rate Summary                                                      |                                                             |                                                            |                                                                    |                                                               |                                                            |                                                  |                                                              |                                                                          |                                         |                                                       |                   |
| Conc-g/L<br>0<br>0.25<br>0.5<br>1<br>2<br>4           | Code<br>LW                                                        | Count<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2               | Mean<br>1.000<br>0.950<br>1.000<br>0.750<br>0.000<br>0.000 | 95% LCL<br>1.000<br>0.315<br>1.000<br>0.115<br>0.000<br>0.080      | 95% UCL<br>1.000<br>1.000<br>1.000<br>1.000<br>0.000<br>0.000 | Min<br>\$.000<br>0.900<br>1.000<br>0.700<br>0.000<br>0.000 | Max<br>1.000<br>1.000<br>0.800<br>0.000<br>0.000 | Std En<br>0.000<br>0.050<br>0.000<br>0.050<br>0.000<br>0.000 | r Std Dev<br>0.000<br>0.071<br>0.000<br>0.071<br>0.000<br>0.000<br>0.000 | CV%<br>0.00%<br>7.44%<br>0.00%<br>9.43% | %Effe<br>0.00%<br>5.00%<br>25.00%<br>100.00<br>100.00 | ,<br>,<br>%<br>)% |
| 96h Survival F                                        | Rate Detail                                                       |                                                             |                                                            |                                                                    |                                                               |                                                            |                                                  |                                                              |                                                                          |                                         |                                                       | ]                 |
| Conc-g/L<br>0<br>0.25<br>0.5<br>1<br>2<br>4           | Code<br>LW                                                        | Rep 1<br>1.000<br>0.900<br>1.000<br>0.800<br>0.000<br>0.000 | Rep 2<br>1.000<br>1.000<br>0.700<br>0.000<br>0.000         |                                                                    |                                                               |                                                            |                                                  |                                                              |                                                                          |                                         |                                                       |                   |
| 96h Survival F                                        | Rate Binomials                                                    |                                                             |                                                            |                                                                    |                                                               |                                                            |                                                  |                                                              |                                                                          |                                         | *******                                               |                   |
| Сопс-g/L<br>0<br>0.25<br>0.5<br>1<br>2<br>4           | Code<br>LW                                                        | Rep 1<br>10/10<br>9/10<br>10/10<br>8/10<br>0/10<br>0/10     | Rep 2<br>10/10<br>10/10<br>10/10<br>7/10<br>0/10<br>0/10   |                                                                    |                                                               |                                                            |                                                  |                                                              |                                                                          |                                         |                                                       |                   |

Analyst\_\_\_\_\_ QA: M

| Acute Amp               | hipod S           | urviva   | al Test                                  |                                         |      |       |       |        |          |                      |            |            |                 |         |                      |        | P       | acific Eco | Ris |
|-------------------------|-------------------|----------|------------------------------------------|-----------------------------------------|------|-------|-------|--------|----------|----------------------|------------|------------|-----------------|---------|----------------------|--------|---------|------------|-----|
| Test Type:<br>Protocoi: | Surviva<br>EPA/60 |          |                                          | 2001)                                   |      |       |       |        |          | rus plum<br>/al Rate | ulosus (A  | mphipod    | Materi<br>Sourc |         | otassiun<br>eference |        |         | REF        |     |
|                         | 2.5               |          |                                          |                                         |      |       |       | Acub   | e Amph   | ipod Survi           | val Test   |            |                 |         |                      |        |         |            |     |
|                         |                   | ····     |                                          | ·                                       |      |       |       |        |          |                      |            |            |                 |         |                      |        |         |            |     |
|                         | 1.9               | <b>-</b> | • ••                                     | · <b>.</b>                              | ·· . |       |       |        |          |                      | ·····      | ······     |                 |         |                      |        |         | ** ** 35   |     |
|                         |                   |          |                                          |                                         |      | ·     |       | · ·    | ·· ·· ·  | · · -· · ·           | 5 A. J. H. | · .        |                 |         |                      | ··· -  | • ••• • | +25        |     |
| ಕರ್ರತಿ, L ಶಿರಮಾತಗಿರು    | 1.3 <b>-</b> ®    | <b>8</b> |                                          |                                         | ₿    |       |       |        |          |                      | ¢          | ę          | ¢               |         | - et                 |        |         | ۲          |     |
| EC50-9/1                |                   |          |                                          | <b>\$</b>                               | Ì    |       |       |        | <u>a</u> | ······               | ·          | A          |                 |         |                      |        |         | '' Mean    |     |
|                         | 0.6.              | ►        | an a |                                         |      | -     | - 14  |        |          |                      |            |            |                 |         |                      |        |         |            |     |
|                         | 0.0               |          | ·* ·                                     | • • • • • • • • • • • • • • • • • • • • |      |       |       |        |          | **                   |            | ∰.<br>™    | -               |         |                      |        |         | -25        |     |
|                         | 2                 | 2        | 3                                        | 4                                       | 5    | 6     | 76    | Ę      | € 1      | 3 D                  | 3213       | 3 14       | 1516            |         | 18                   | 19     | 20      | -3s<br>21  |     |
|                         |                   | ean:     | 0.967                                    | 8                                       |      | unt:  | 20    | N.     |          |                      | -          | it: 0.3078 |                 |         | on Lim               |        |         |            |     |
| allb: Com               |                   | gma:     | 0.33                                     | · · · ·                                 | CV   |       | 34.10 | 70<br> | *        | EZS VVAL             | ning Lim   | it: 1.628  |                 | 3s Acu  | on Limi              | t: 1.9 | 58      |            |     |
| uality Con<br>bint Year |                   |          | Time                                     | QĆ D                                    | ata  | Delta |       | ligma  |          | Namina               | Action     | Test ID    |                 | Analys  | ie ID                |        |         |            |     |
| 2017                    |                   |          | 13:45                                    | 1.275                                   |      | 0.306 |       | 9296   |          |                      | *7911971   | 15-6554-4  |                 | 14-4434 |                      | •••••  |         |            |     |
|                         |                   |          | 14:45                                    | 1.11                                    |      | 0.141 | 8 0   | .4296  | 3        |                      |            | 10-2599-1  | 1400            | 07-465  | 2~5056               |        |         |            |     |
|                         | Apr               | 2        | 14:45                                    | 1.11                                    |      | 0.141 | 8 0   | .4296  | 5        |                      |            | 03-7736-2  | 2045            | 07-0537 | 7-3798               |        |         |            |     |

| 1  | 2017 | Mar | 20             | 13:45 | 1.275  | 0.3068   | 0.9296  |     | 15-6554-4790 | 14-4434-6989 |
|----|------|-----|----------------|-------|--------|----------|---------|-----|--------------|--------------|
| 2  |      |     | 26             | 14:45 | 1.11   | 0.1418   | 0.4296  |     | 10-2599-1400 | 07-4652-5056 |
| 3  |      | Apr | 2              | 14:45 | 1.11   | 0.1418   | 0.4296  |     | 03-7736-2045 | 07-0537-3798 |
| 4  |      | May | 7              | 15;11 | 0.9733 | 0.005484 | 0.01662 |     | 14-7050-7640 | 06-9489-8995 |
| 5  |      |     | 8              | 14:30 | 1.149  | 0.1809   | 0.5482  |     | 20-9419-2363 | 07-2865-1035 |
| 6  |      |     | 21             | 14:20 | 0.694  | -0.2738  | -0.8298 |     | 06-6529-5264 | 19-2949-2496 |
| 7  |      |     | 2 <del>9</del> | 11:15 | 0.8694 | -0.09841 | -0.2982 |     | 03-2668-7249 | 15-3775-5258 |
| 8  |      | Jun | 10             | 15:25 | 1      | 0.0322   | 0.09758 |     | 13-6556-4498 | 09-6406-5730 |
| 9  |      | Aug | 12             | 16:42 | 0.7579 | ~0.2099  | -0.6362 |     | 18-9001-6049 | 18-6580-9693 |
| 10 |      | Dec | 14             | 15:15 | 0.6943 | -0.2735  | -0.8287 |     | 10-3688-8446 | 15-6335-1863 |
| 11 | 2018 | Jan | 21             | 14:30 | 0.3976 | -0.5702  | -1.728  |     | 17-9027-4290 | 04-6885-5044 |
| 12 |      | Mar | 10             | 16:15 | 0.4061 | -0.5617  | -1.702  |     | 11-3655-7432 | 07-2003-1945 |
| 13 |      |     | 10             | 16:20 | 1.107  | 0.1395   | 0.4228  |     | 12-8488-1740 | 17-5853-5233 |
| 14 |      |     | 24             | 16:45 | 0.302  | -0.6658  | -2.018  | (-) | 06-9088-3226 | 02-7709-3796 |
| 15 |      | Apr | 10             | 15:50 | 1.095  | 0,1277   | 0.3869  |     | 01-6744-6153 | 16-3209-5871 |
| 16 |      |     | 12             | 16:52 | 1.336  | 0.3685   | 1.117   |     | 14-2749-0047 | 21-0724-8309 |
| 17 |      |     | 18             | 15:40 | 1,406  | 0.4381   | 1.328   |     | 11-3078-9910 | 21-0077-5534 |
| 18 |      |     | 20             | 17:53 | 1.347  | 0.3796   | 1.15    |     | 06-7749-4242 | 05-1101-4036 |
| 19 |      | May | 9              | 17:50 | 1.042  | 0.07371  | 0.2234  |     | 13-9937-5878 | 04-9522-7383 |
| 20 |      |     | 23             | 14:45 | 1.286  | 0.3181   | 0.9638  |     | 16-6565-6736 | 04-9947-7179 |
| 21 |      |     | 31             | 16:40 | 1.19   | 0.2218   | 0.672   |     | 09-9345-3748 | 13-5145-5761 |
|    |      |     |                |       |        |          |         |     |              |              |

**CETIS QC Plot** 

Report Date: 07 Jun-18 16:15 ( 1 of 1)

| Client:        | _            | Refe | rence To: | xicant |        | C    | )rganism  | Log #:         | 100       | 388                                                                                          |
|----------------|--------------|------|-----------|--------|--------|------|-----------|----------------|-----------|----------------------------------------------------------------------------------------------|
| Test Material: |              | Pota | assium Ch | loride |        | (    | Control/D | iluent:        |           | Seawater (+/-1 ppt)                                                                          |
| Test ID#:      | 78           | 387  | Project # | 28     | 912    |      | Test      | Date:          |           |                                                                                              |
|                |              |      |           |        |        |      |           | zation:        |           |                                                                                              |
| Treatment      | Temp         | 1    | эH        | D.O.   | (mg/L) |      | ty (ppt)  | 1              | Organisms |                                                                                              |
| (g KCl /L)     | (°C)         | new  | old       | new    | old    | new  | old       | A              | В         | - SIGN-OFF                                                                                   |
| Control        | 25.2         | 7,84 |           | 4.8    |        | 19.5 |           | 10             | 10        | Date: 5/31/18                                                                                |
| 0.25           | 25.1         | 4.83 |           | 7.8    |        | 199  |           | 10             | 10        | Test Solution Prep: SMC<br>New WQ: NB                                                        |
| 0.5            | 25.0         | 4.81 |           | 8,0    |        | 20,1 |           | 10             | 10        | New WQ: NB                                                                                   |
| 1              | 85.0         | 7.19 |           | 8.2    |        | 20.5 |           | 10             | 10        | Initiation Time: 1640<br>Initiation Signoff: 7<br>RT Stock Batch #: 28<br>+ 1hr Inspection 7 |
| 2              | 24:2         | 7.71 |           | 8.8    |        | 21.4 |           | 10             | 10        | Initiation Signoff:                                                                          |
| 4              | 24.4         | 7.62 |           | 9.8    |        | 22.9 |           | 10             | 10        | RT Stock Batch #: 28                                                                         |
| Meter ID:      | 100A         | PHIS |           | R712   |        | \$40 |           |                |           | + lhr Inspection                                                                             |
| Control        | 24.5         |      | 7.87      |        | 7.5    |      | 20.1      |                |           | Date: 6/1/18                                                                                 |
| 0.25           | 24.6         |      | 7.87      |        | 75     |      | 20.5      |                |           | Count Time: 0831<br>Count Signoff: SMC                                                       |
| 0.5            | 24.6         |      | 7.87      |        | 7.5    | **** | 20.7      |                |           | Count Signoff:                                                                               |
| 1              | 24.6         |      | 7.81      |        | 7.5    |      | 21,2      |                |           | Old WQ: MS                                                                                   |
| 2              | 24.4         |      | 7.87      |        | 7.5    |      | 22.1      |                | *****     | PM Inspection: TIC                                                                           |
| 4              | 24.5         |      | 7.86      |        | 7.3    |      | 23.9      |                | *****     |                                                                                              |
| Meter ID:      | 103A         |      | PH 24     |        | for    |      | ELIO      |                | *****     |                                                                                              |
| Control        | 25.2         |      | 7.84      |        | 4.5    |      | 21.1      |                |           | Date: $6/2/18$                                                                               |
| 0.25           | 25,3         |      | 7.84      |        | 74     |      | 21.1      |                |           | Count Time:                                                                                  |
| 0.5            | 25.2         |      | 7.83      |        | 7.4    |      | 21.5      |                |           | Count Time: 0841<br>Count Signoff:                                                           |
| 1              | 25.3         |      | 2.82      |        | 1.3    |      | 22.0      |                |           | Old WQ: NB                                                                                   |
| 2              | 25.0         |      | 7.84      |        | 4.3    |      | 22.7      |                |           | PM Inspection: TK                                                                            |
| 4              | 25.2         |      | 7.81      |        | 7,2    |      | 24.7      |                |           |                                                                                              |
| Meter ID:      |              |      |           |        |        |      |           |                |           |                                                                                              |
| Control        | 25.3         |      |           |        | 7.6    |      | 20.9      |                |           | Date: 6/3/18                                                                                 |
| 0.25           | 25.3         |      | 7.81      |        | 7.5    |      | 21.6      |                |           | Count Time: AG 10                                                                            |
|                | 25.2         |      | 7.85      |        | 7.6    |      | 21.4      |                |           | Count Time: 0919<br>Count Signoff: TK<br>Old WQ: EL                                          |
| 1              | 25.2         |      | 7.85      |        | 7.5    |      | 22.3      |                |           | Old WO: 10                                                                                   |
|                | 25.1         |      | 7.81      |        | 7.4    |      | 23.3      |                |           | PM Inspection:                                                                               |
| 4              | 25.2         |      | 7.81      |        | 7.4    |      | 24.8      |                |           | Tom                                                                                          |
|                | IODA         |      | PHIS      |        | 20/10  |      | ECIO      |                |           |                                                                                              |
|                | 24.3         |      | 1         |        | 7,4    |      | 1000      |                |           | Date: CALLIN                                                                                 |
| 0.25           |              |      | 777       |        |        |      | 22.1      | 10             | 10        | Date: 9/4/19<br>Termination Time: 1518                                                       |
| 0.5            | 24,          |      | 7.78      |        | 7.3    |      | 22.8      |                | 10        | Termination Signoff: 5C                                                                      |
| 1              | 24.1         |      | 7,80      |        | 7.3    |      | 22.5      | 10             | 10        | Old WQ: J                                                                                    |
| 2              | २५.।<br>२५.। |      | 7,79      |        |        |      | 23.6      | 8              |           |                                                                                              |
| 4              | 24,1         |      | 7.79      |        | 7.3    |      | 24.1      | 0              | 0         |                                                                                              |
|                | -            |      | 7,76      |        |        |      | 26.0      | ShikeBallallal |           |                                                                                              |
| Meter ID:      | 103A         |      | pH24      |        | RDB    |      | EC13      |                |           |                                                                                              |

#### 96 Hour Leptocheirus plumulosus Marine Reference Toxicant Test Data

## **Appendix E**

Test Data and Summary of Statistics for the Toxicity Evaluation of Vallejo Ferry Terminal DU1-Comp Sediment with the Polychaete, *Neanthes arenaceodentata* 

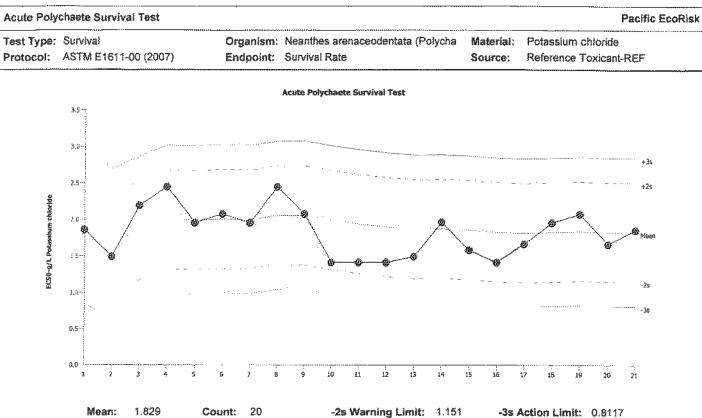
| CETIS Summary Report |                 |         |            |           |          |             |              | ,          | ort Date:<br>Code: | 23              | *            | 03 (p 1 of 1<br>5-6723-6441 |
|----------------------|-----------------|---------|------------|-----------|----------|-------------|--------------|------------|--------------------|-----------------|--------------|-----------------------------|
| Acute Polycha        | aete Survival ĭ | est     |            |           |          |             |              |            |                    |                 | Paci         | fic EcoRisk                 |
| Batch ID:            | 05-9946-7640    |         | est Type:  |           |          |             |              |            | -                  | Ashleigh Findle | у            |                             |
| Start Date:          | 08 May-18 16:   |         | Protocol:  |           |          | 00 (2007)   |              | Dilu       |                    | fot Applicable  |              |                             |
| -                    | 18 May-18 14:   |         | species:   |           |          | aceodentata | ä            | Brid       |                    | tot Applicable  |              |                             |
| Duration:            | 9d 22h          | S       | Source:    | Aquatic   | Tox. S   | up.         |              | Age        | : •                | ₹/A             |              |                             |
| Sample Code          | Sample          | ID S    | Sample Da  | te        | Receip   | t Date      | Sample Age   | e Clie     | nt Name            | Р               | roject       |                             |
| FVFT_0518_N          | A_C1 09-5627-   | 8591 0  | 8 May-18 1 | 16:00     | 08 May   | -18 16:00   | n/a (20.2 °C | ) CLE      | : Enginee          | ring 28         | 839          |                             |
| DU-1-Comp            | 19-6811-        | -6934 C | 3 May-18 ( | 09:00     | 03 May   | -18 12:04   | 5d 7h        |            |                    |                 |              |                             |
| Sample Code          | Material        | Туре    |            | Sample    | Sourc    | Ð           | Sta          | tion Locat | ion                | Lat/Long        |              |                             |
| FVFT_0518_N          | A_C1 Sedimen    | t       |            | CLE: Er   | ngineeri | ing         | LAE          | BQA        |                    |                 |              |                             |
| DU-1-Comp            | Sedimen         | t       |            | CLE: Er   | ngineeri | ing         | DU           | 5          |                    |                 |              |                             |
| Single Compa         | rison Summa     | ry      |            |           |          |             | <u> </u>     |            |                    |                 |              |                             |
| Analysis ID          | Endpoint        |         | Comp       | parison I | lethod   |             |              | P-Value    | Compa              | arison Result   |              |                             |
| 05-1644-7459         | Survival Rate   |         | Wilco      | xon Rank  | Sum 1    | Two-Sample  | Test         | 1.0000     | DU-1-0             | comp passed s   | urvival rate | }                           |
| Survival Rate        | Summary         |         |            |           |          |             |              | *****      |                    |                 |              |                             |
| Sample               | Code            | Count   | Mean       | 95        | % LCL    | 95% UCL     | Min          | Max        | Std En             | r Std Dev       | CV%          | %Effect                     |
| FVFT_0518_N          | A_C1 CS         | 5       | 1.000      | 1.0       | 00       | 1.000       | 1.000        | 1.000      | 0.000              | 0.000           | 0.00%        | 0.00%                       |
| DU-1-Comp            |                 | 5       | 1.000      | 1.0       | 00       | 1.000       | 1.000        | 1.000      | 0.000              | 0.000           | 0.00%        | 0.00%                       |
| Survival Rate        | Detail          |         |            |           |          |             |              |            |                    |                 |              |                             |
| Sample               | Code            | Rep 1   | Rep 2      | Re        | р 3      | Rep 4       | Rep 5        |            |                    |                 |              |                             |
| FVFT_0518_N          | A_C1 CS         | 1.000   | 1.000      | 1.0       | 00       | 1.000       | 1.000        |            | _                  |                 |              |                             |
| DU-1-Comp            |                 | 1.000   | 1.000      | 1.0       | 00       | 1.000       | 1.000        |            |                    |                 |              |                             |
| Survival Rate        | Binomials       |         |            |           |          |             |              |            |                    | ·               |              |                             |
| Cometa               | Code            | Rep 1   | Rep 2      | Re        | р3       | Rep 4       | Rep 5        |            |                    |                 |              |                             |
| Sample               | 0000            |         |            |           |          |             |              |            |                    |                 |              |                             |
| FVFT_0518_N          |                 | 10/10   | 10/10      |           | 10       | 10/10       | 10/10        |            |                    |                 |              |                             |

THE OA RU Analyst:\_\_\_\_

| CETIS Analyti                                       | cai itep               |                                  |           |            |          |                   |          | ort Date:<br>Code: |                                         | 78131   1 | 03 (p 1 of<br>5-6723-644 |
|-----------------------------------------------------|------------------------|----------------------------------|-----------|------------|----------|-------------------|----------|--------------------|-----------------------------------------|-----------|--------------------------|
| Acute Polychaete                                    | Survival T             | est                              |           |            |          |                   |          |                    | *************************************** | Paci      | fic EcoRis               |
|                                                     | 1644-7459<br>May-18 11 |                                  |           | vival Rate | Two Samp | ie                |          | S Versior          |                                         | .9.2      |                          |
| Wilcoxon Rank Si                                    | ım Two-Sa              | imple Test                       |           |            |          |                   |          |                    |                                         |           |                          |
| Sample I vs                                         | Sample I               | 11                               | Test Stat | Critical   | Ties D   | F P-Type          | P-Value  | Decisio            | n(a:5%)                                 |           |                          |
| Control Sed                                         | DU-1-Co                | mp                               | 27.5      | n/a        | 1 8      |                   | 1.0000   | Non-Sig            | nificant Effec                          | ŧ         |                          |
| ANOVA Table                                         |                        |                                  |           |            |          |                   |          |                    |                                         |           |                          |
| Source                                              | Sum Sq                 | uares                            | Mean Squ  | are        | DF       | F Stat            | P-Value  | Decisio            | n(a:5%)                                 |           |                          |
| Between                                             | 0                      | ····· , ·····•• , ·, ·· , ·· , · | 0         |            | 1        | 65500             | <1.0E-37 |                    | nt Effect                               |           |                          |
| Error                                               | 0                      | a processo a paper               | 0         |            | 8        |                   |          |                    |                                         |           |                          |
| Total                                               | 0                      |                                  |           |            | 9        |                   |          |                    |                                         |           |                          |
| Survival Rate Sun                                   | ımary                  |                                  |           |            |          |                   |          |                    |                                         |           |                          |
| Sample                                              | Code                   | Count                            | Mean      | 95% LCL    | 95% UCL  | Median            | Min      | Max                | Std Err                                 | CV%       | %Effect                  |
| FVFT_0518_NA_C                                      | 1 CS                   | 5                                | 1.000     | 1.000      | 1.000    | 1.000             | 1.000    | 1.000              | 0.000                                   | 0.00%     | 0.00%                    |
| DU-1-Comp                                           |                        | 5                                | 1.000     | 1.000      | 1.000    | 1.000             | 1.000    | 1.000              | 0.000                                   | 0.00%     | 0.00%                    |
| Angular (Correcte                                   | d) Transfo             | rmed Summ                        | ary       |            |          |                   |          |                    |                                         |           |                          |
| Sample                                              | Code                   | Count                            | Mean      | 95% LCL    | 95% UCL  | . Median          | Min      | Max                | Std Err                                 | CV%       | %Effect                  |
| VFT_0518_NA_C                                       | 1 CS                   | 5                                | 1.41      | 1.41       | 1.41     | 1.41              | 1.41     | 1.41               | 0                                       | 0.00%     | 0.00%                    |
| OU-1-Comp                                           |                        | 5                                | 1.41      | 1.41       | 1.41     | 1.41              | 1.41     | 1.41               | 0                                       | 0.00%     | 0.00%                    |
| Graphics                                            |                        |                                  |           |            |          |                   |          |                    |                                         |           |                          |
| 1.0                                                 | ø .                    |                                  |           |            |          | 1.0E+00           |          |                    |                                         |           |                          |
| 0.9                                                 | ¥ .                    |                                  | •         |            |          | · ·               |          |                    | :                                       |           |                          |
|                                                     |                        |                                  |           |            |          |                   |          |                    | ł                                       |           |                          |
| . 8.0                                               |                        |                                  |           |            |          | 7.56-01           |          |                    | 1                                       |           |                          |
| 5.7 :-                                              |                        |                                  |           |            | ,        | * <b>A</b>        |          |                    | 1                                       |           |                          |
| 0.6                                                 |                        |                                  |           |            |          | Corr. Angla       |          |                    |                                         |           |                          |
| स्थिति ।<br>सं                                      |                        |                                  |           |            |          | *ð<br>5,05-01 ··· |          |                    |                                         |           |                          |
| · 적 · ·<br>문 0.5<br>· ·<br>· ·<br>· ·<br>· ·<br>· · |                        |                                  |           |            |          | 20201             |          |                    |                                         |           |                          |
| a 0.4                                               |                        |                                  |           |            |          |                   |          |                    |                                         |           |                          |
| 6.3                                                 |                        |                                  |           |            |          |                   |          |                    |                                         |           |                          |
| F                                                   |                        |                                  |           |            |          | 2.58-61           |          |                    | 1                                       |           |                          |
| 0.2                                                 |                        |                                  |           |            |          |                   |          |                    |                                         |           |                          |
| 0.1                                                 |                        |                                  |           |            |          |                   |          |                    |                                         |           |                          |
|                                                     |                        |                                  |           |            |          | 0.0E+00           |          | 5                  | L <u>a a</u>                            |           |                          |
| 0.0                                                 |                        |                                  |           |            |          | -2.0              | -15 -10  | -0.5 0             | & 0.5 S.                                | Q 5.5     | 20                       |

|             | 10-D               | ay Estua       | rine/Ma                | rine Sed      | iment To              | xicity Te             | est Data                               |
|-------------|--------------------|----------------|------------------------|---------------|-----------------------|-----------------------|----------------------------------------|
| Client:     | FOTH (CL           | E): Vallejo Fe | erry Terminal          | Test ID#:     | <i>بد</i>             | I                     | Date (Day 0): 5/8/19                   |
| Species:    |                    | thes arenoceo  |                        | Project #:    |                       | -                     | r Inspection:                          |
| Orga        | nism Log #:        | 10947          | Organ                  | ism Supplier: | ATS                   |                       | ······································ |
| Day of      | Test               | Sample ID:     |                        | Lab C         | Control               |                       | Sign-Off                               |
| Test        | Replicate          | Temp *C        | pH                     | D.O. mg/L     | Salinity ppt          | # Alive               |                                        |
|             | Rep A              | 20.2           | 7.87                   | 7.5           | 29.2                  | lo                    | Date;<br>5/8/18                        |
|             | Rep B              | 20.2           | 7.88                   | 7.5           | 29.2                  | 10                    | WQ Initial & Time;<br>MB 0804          |
| Day 0       | Rep C              | 20.2           | 7.82                   | 7.5           | 29.1                  | 10                    | Initiation Time:<br>1600               |
|             | Rep D              | 20.2           | 7.79                   | 7.5           | 29.2                  | 10                    | Scientist Initiation:                  |
|             | Rep E              | 20.2           | 7.80                   | 7.5           | 29.4                  | 10                    | Scientist Confirmation:                |
| Day 1       | Rep A              | 20.6           | 7.76                   | 7-3           | 29-2                  |                       | Date: 5-978 Time:<br>WQ. 4.1 1115      |
| Day 2       | Rep B              | 20.9           | 7.50                   | 7.5           | 29.9                  |                       | Time: SSS                              |
| Day 3       | Rep C              | 20.6           | 7.72                   | 7.5           | 30.2                  |                       | Date Trad -12 m                        |
| Day 4       | Rep D              | 26.4           | 7,92                   | 7.3           | 29.6                  |                       | Structure 2 + 1 + 9 / 1 (2)            |
| Day 5       | Rep E              | 20,2           | 7.74                   | 7,3           | 29.3                  |                       | Date: \$7(5/1%<br>WO: 57 Time: 0847    |
| Day 6       | Rep A              | 20.3           | 7.84                   | 76            | 30.1                  |                       | Date == 14 - T S Time 1000             |
| Day 7       | Rep B              | 74 51 Mar 20.2 | +y slistie<br>1.647.8% | 51227 7.1     | 相望多月310               |                       | Date: 5/15/14 Time: 1706               |
| Day 8       | Rep C              | 20.0           | 7.87                   | 7,2           | 31,-1                 |                       | Date: Sijeji S Time: 1458              |
| Day 9       | Rep D              | 20.3           | 7.79                   | 6.1           | 30.8                  |                       | Date: \$117112<br>WQ F7 Time: 1451     |
|             | Rep A              | 20.0           | 7.97                   | 7.5           | 32.0                  | 10                    | Date: 5/18/18                          |
|             | Rep B              | 20,0           | 7.94                   | 7.5           | 32.2                  | 10                    | Time: 0830                             |
| Day 10      | Rep C              | 20.0           | 7.96                   | 1.5           | 32.2                  | ID.                   | WQ: JR                                 |
|             | Rep D              | 20.0           | 7.90                   | 7.2           | 31.5                  | 10                    | Termination Time:<br>1427              |
|             | Rep E              | 2.0.0          | 7.48                   | 7.3           | 32.1                  | 10                    | Scientist Counts: FP                   |
| Day of Test | Matrix             | рН             | D.O. mg/L              | Salinity ppt  | Total Sulfide<br>mg/L | Total Ammonia<br>mg/L | Sign-Off                               |
|             | Porewater          | 7-65           | (e.1                   | 24.7          | 0.061                 | 1.33                  | Date: 16/18 Time: 1623<br>WO: 1623     |
| Day 0       | Overlying<br>Water |                |                        |               |                       | <1.00                 | Date: 5/8/18 Time: 0957<br>WQ:11B      |
|             | Meter ID           | PH21           | PDIO                   | ECV2          | DR4000                | DR3800                |                                        |
|             | Porewater          | 7.30           | 6.6                    | 28.2          | 0,044                 | DR3800                | Date: 576/18 Time: 1100<br>WQ: 52      |
| Day 10      | Overlying<br>Water |                |                        |               |                       | <1.00                 | Date: 37/3/13 Time: 1100<br>WQ: 32     |
|             | Meter ID           | PHIA           | R013                   | ECV3          | DEYOOD                | DR34900               |                                        |

|                | 10-D               | ay Estua       | rine/Ma      | rine Sed      | iment To              | xicity Te             | est Data                             |
|----------------|--------------------|----------------|--------------|---------------|-----------------------|-----------------------|--------------------------------------|
| Client:        | FOTH (CL           | E): Vallejo Fe | rry Terminal | Test ID#:     | 78131                 | <u> </u>              | Date (Day 0): 5/8/19                 |
| Species:       | Neant              | thes arenoceo  | dentata      | Project #:    | 28839                 | . T+1h                | r Inspection:                        |
| Orga           | nism Log #:        | 10947          | Organ        | ism Supplier: | ATS                   |                       |                                      |
| Day of         | Test               | Sample ID:     |              | DU-1 C        | omposite              |                       | Sígn-Off                             |
| Test           | Replicate          | Temp °C        | pН           | D.O. mg/L     | Salinity ppt          | # Alive               |                                      |
|                | Rep A              | 20.3           | 7.78         | 7.4           | 29.5                  | 10                    | Date:<br>5/8/18                      |
|                | Rep B              | 20.3           | 7,60         | 7.5           | 29.4                  | P                     | WQ Initial & Time:<br>MB 0837        |
| Day 0          | Rep C              | 20.3           | 7.81         | 7-5           | 29.5                  | 10                    | Initiation Time:                     |
|                | Rep D              | 20.3           | 7.81         | 7.5           | 29.5                  | 10                    | Scientist Initiation:                |
|                | Rep E              | 20.3           | 7.81         | 7.5           | 29.7                  | 1D                    | Scientist Confirmation:              |
| Day I          | Rep A              | 19.8           | 781          | 1-21          | 29.5                  |                       | Date: 5-4-18 Time:<br>WQ. Y. ( )) 15 |
| Day 2          | Rep B              | 20.6           | 4.67         | 6.*>          | 30.0 .                |                       | Dates/10/16 Time: 1656               |
| Day 3          | Rep C              | 19.9           | 7.66         | 7.4           | 30.9                  |                       | Date: G41-18' Time: 0915             |
| Day 4          | Rep D              | 20.3           | 7,70         | 7.5           | 29.0                  |                       | Date: 5/12/10 Time: 1116             |
| Day 5          | Rep E              | 2.6.2          | 7.77         | 7.5           | 31.1                  |                       | Date: 5/13/12 Time:08.5/             |
| Day 6          | Rep A              | 20-2           | 785          | 7.7           | 31.5                  |                       | Date 5-14-18 Time 1000               |
| Day 7          | Rep B              | 26.2           | 7.64         | 6.7           | 28.9                  |                       | Date:5115/18 Time:1706               |
| Day 8          | Rep C              | 19.8           | 7.74         | 7.4           | સ.પ                   |                       | Date Stuffs Time: 400                |
| Day 9          | Rep D              | 20.0           | 7.67         | 7.7           | 29.0                  |                       | Date: 5/17/1% Time: 1457<br>WQ F7    |
|                | Rep A              | 20.1           | 7.88         | 7.5           | 34.5                  | /0                    | Date: 57/18/18                       |
|                | Rep B              | 20.1           | 7.88         | 7.6           | 30.5                  | 10                    | Time: 0830                           |
| Day 10         | Rep C              | 20.1           | 7.83         | 7,5           | 32.4                  | 10                    | <sup>WQ:</sup> 3R                    |
|                | Rep D              | 20.1           | 7.89         | 7.5           | 30.2                  | 10                    | Termination Time: 1453               |
|                | Rep E              | 20.1           | 7,90         | 7.5           | 34.6                  | 10                    | Scientist Counts: EP                 |
| Day of<br>Test | Matrix             | pН             | D.O, mg/L    | Salinity ppt  | Total Sulfide<br>mg/L | Total Ammonia<br>mg/L | Sign-Off                             |
|                | Porewater          | 7.49           | U-U          | 210.5         | 0.175                 | 13.7                  | Date: 5/0/18 Time: 1623              |
| Day 0          | Overlying<br>Water |                |              |               |                       | <i>≺1.0</i> 0         | Date: 5/8/18 Time: 0957<br>WQ: MB    |
|                | Meter ID           | PHZI           | PDIO         | EC12          | 0004 40               | DP3800                |                                      |
|                | Porewater          | 7.30           | 6.4          | 27.6          | 0,052                 | 22.00                 | Date: 52-51-5 Time<br>WQ: 3-2 11-00  |
| Day 10         | Overlying<br>Water |                |              |               |                       | 21.00                 | Date:5/18/18 Time<br>WQ: 5/2 100     |
|                | Meter ID           | 8419           | RD13         | EC13          | 00.4000               | W.3400                |                                      |


## Appendix F

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Polychaete, *Neanthes arenaceodentata* 

| CETIS Sur                                             | nmary Repo                                                          | rt                                                 |                                                             |                                                             |                                                               |                                                  |                                                  | port Date<br>st Code:                                        | n: 23 f                                                     | Vlay-18 09:1<br>78204   06      |                                                       |                    |
|-------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-------------------------------------------------------|--------------------|
| Acute Polych                                          | aete Survival Te                                                    | st                                                 |                                                             |                                                             |                                                               |                                                  |                                                  |                                                              | ******                                                      | Pacifi                          | c EcoR                                                | lisk               |
| Batch ID:<br>Start Date:<br>Ending Date:<br>Duration: | 14-9582-8371<br>08 May-18 16:35<br>12 May-18 15:14<br>95h           | 5                                                  | Test Type:<br>Protocol:<br>Species:<br>Source:              | Survival<br>ASTM E1611-0<br>Neanthes aren<br>Aquatic Tox. S | aceodentata                                                   | 9                                                | Dil                                              | uent:<br>ne:                                                 | Ashleigh Findle<br>Diluted Seawate<br>Not Applicable<br>N/A | -                               | <u>.,,,,</u>                                          | <u></u>            |
| •                                                     | 17-0750-7540<br>08 May-18 16:35<br>08 May-18 16:35<br>n/a (19.3 °C) | 5  <br>5 ;                                         | Code:<br>Material:<br>Source:<br>Station:                   | KCI<br>Potassium chlo<br>Reference Toxi<br>In House         |                                                               |                                                  |                                                  |                                                              | Reference Toxic<br>28868                                    | ant                             |                                                       |                    |
| Multiple Com<br>Analysis ID<br>20-6546-2274           | parison Summar<br>Endpoint<br>Survival Rate                         | Y                                                  |                                                             | arison Method<br>Exact Test                                 |                                                               |                                                  | NOEL<br>1                                        | LOEL<br>2                                                    | 1.414                                                       | τυ                              | PMSI<br>n/a                                           | <b>⊳</b> ∠         |
| Point Estimat<br>Analysis ID<br>18-2454-8442          | Endpoint                                                            |                                                    |                                                             | Estimate Metho<br>man-Kärber                                | ođ                                                            |                                                  | Level<br>EC50                                    | <b>g/L</b><br>1.86                                           | <b>95% LCL</b><br>1.56                                      | 95% UCL<br>2.21                 | TU                                                    | <u></u>            |
| Survival Rate                                         | Summary                                                             |                                                    |                                                             |                                                             |                                                               |                                                  |                                                  | •                                                            |                                                             |                                 |                                                       |                    |
| Conc-g/L<br>0<br>0.5<br>1<br>2<br>3<br>4              | Code<br>LW                                                          | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2          | Mean<br>1.000<br>1.000<br>0.500<br>0.000<br>0.000           | 95% LCL<br>1.000<br>1.000<br>0.000<br>0.000<br>0.000        | 95% UCL<br>1.000<br>1.000<br>1.000<br>1.000<br>0.000<br>0.000 | Min<br>1.000<br>1.000<br>0.400<br>0.000<br>0.000 | Max<br>1.000<br>1.000<br>0.600<br>0.000<br>0.000 | Std E:<br>0.000<br>0.000<br>0.000<br>0.100<br>0.000<br>0.000 | rr Std Dev<br>0.000<br>0.000<br>0.141<br>0.000<br>0.000     | CV%<br>0.00%<br>0.00%<br>28.28% | %Effe<br>0.00%<br>0.00%<br>50.00%<br>100.00<br>100.00 | 6<br>6<br>76<br>0% |
| Survival Rate                                         |                                                                     | _                                                  |                                                             |                                                             |                                                               |                                                  |                                                  |                                                              |                                                             |                                 |                                                       |                    |
| Conc-g/L<br>0<br>0.5<br>1<br>2<br>3<br>4              | Code<br>LW                                                          | Rep 1<br>1.000<br>1.000<br>0.400<br>0.000<br>0.000 | Rep 2<br>1.000<br>1.000<br>1.000<br>0.500<br>0.000<br>0.000 |                                                             |                                                               |                                                  |                                                  |                                                              |                                                             |                                 |                                                       |                    |
| Survival Rate                                         | Binomials                                                           |                                                    |                                                             |                                                             |                                                               |                                                  |                                                  |                                                              |                                                             |                                 |                                                       | BWGC               |
| Conc-g/L<br>0<br>0.5<br>1<br>2<br>3<br>4              | ΤΜ                                                                  | Rep 1<br>5/5<br>5/5<br>2/5<br>2/5<br>0/5<br>0/5    | Rep 2<br>5/5<br>5/5<br>3/5<br>3/5<br>0/5<br>0/5             |                                                             |                                                               |                                                  |                                                  |                                                              |                                                             |                                 |                                                       |                    |

VER DA: P26

Analyst: -



Report Date:

23 May-18 09:14 (1 of 1)

**CETIS QC Plot** 

0.3392 CV: Sigma: 18.50% +2s Warning Limit: 2.508 +3s Action Limit: 2.847 **Quality Control Data** Point Year Month Day Time QC Data Delta Sigma Warning Action Test ID Analysis ID 2017 Apr 22 14:45 1.861 0.03221 0.09496 15-6003-6744 17-4060-2529 May 6 1.494 -0.3349 -0.9874 15:00 21-0552-7615 02-8467-7871 20 16:10 2.195 0.3656 1.078 09-4474-2182 15-5577-6823

| 4  |      |     | 28 | 13:40 | 2.449 | 0.6205  | 1.829   | 16-3611-1692 | 13-1210-3384 |  |
|----|------|-----|----|-------|-------|---------|---------|--------------|--------------|--|
| 5  |      | Jun | 11 | 14:00 | 1.958 | 0.129   | 0.3804  | 11-6380-3068 | 12-5619-7354 |  |
| 6  |      |     | 28 | 15:30 | 2.077 | 0.2483  | 0.7321  | 05-6775-2170 | 05-4294-8440 |  |
| 7  |      | Aug | 13 | 14:30 | 1.958 | 0.129   | 0.3804  | 05-1812-8945 | 06-6187-1856 |  |
| 8  |      | Sep | 12 | 16:25 | 2.449 | 0.6205  | 1.829   | 12-2089-1598 | 06-0050-8843 |  |
| 9  |      | Nov | 4  | 17:10 | 2.077 | 0.2483  | 0.7321  | 09-3141-8749 | 15-7188-1772 |  |
| 10 |      |     | 20 | 11:50 | 1.414 | -0.4148 | -1.223  | 12-9226-5787 | 19-3597-6888 |  |
| 11 | 2018 | Jan | 22 | 13:31 | 1.414 | -0.4148 | -1.223  | 16-8358-9988 | 19-6612-0527 |  |
| 12 |      | Feb | 22 | 14:30 | 1,414 | -0.4148 | -1.223  | 16-7469-4240 | 17-7683-8955 |  |
| 13 |      | Mar | 5  | 16:33 | 1.494 | -0.3349 | -0.9874 | 09-9409-5410 | 03-3515-5372 |  |
| 14 |      |     | 11 | 16:00 | 1.966 | 0.1373  | 0.4048  | 16-3781-7875 | 07-0270-3147 |  |
| 15 |      | Apr | 2  | 14:00 | 1.578 | -0.2506 | -0.7387 | 02-9144-8870 | 05-3060-4479 |  |
| 16 |      |     | 8  | 14:20 | 1.414 | -0.4148 | -1.223  | 16-6276-2572 | 16-8247-3969 |  |
| 17 |      |     | 13 | 15:53 | 1.668 | -0.1614 | -0.4759 | 12-8278-5353 | 06-8040-8827 |  |
| 18 |      |     | 16 | 15:50 | 1.958 | 0.129   | 0.3804  | 05-0271-4251 | 13-8059-3791 |  |
| 19 |      |     | 21 | 16:00 | 2.077 | 0.2483  | 0.7321  | 20-1755-8965 | 02-1406-5573 |  |
| 20 |      | May | 2  | 11:43 | 1.668 | -0.1614 | -0.4759 | 18-4228-3270 | 07-9729-4997 |  |
| 21 |      |     | 8  | 16:35 | 1.861 | 0.03221 | 0.09496 | 06-7144-1297 | 18-2454-8442 |  |
|    |      |     |    |       |       |         |         |              |              |  |

1

2

3

39/54

Analyst:

Rb

| 96 Ho          | our Ne | eanthe,            | s aren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aceode | entata                                 | Mari    | ne Ref     | erence     | Toxica   | ant Test Data                                                                                           |
|----------------|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------|---------|------------|------------|----------|---------------------------------------------------------------------------------------------------------|
| Client:        |        | Refe               | rence Tox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | icant  |                                        | 0       | rganism I  | .og #:     | 100      | 747                                                                                                     |
| Test Material: |        | Pots               | ssium Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | loride |                                        | . (     | Control/Di | luent:     | 30 ppt 3 | Seawater (+/-2 ppt)                                                                                     |
| Test ID#:      | 28     | 868                | Project #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78     | 204                                    | -       |            | Date:      |          | 18                                                                                                      |
|                |        |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                        |         | Randomiz   | ********** | 2.6      |                                                                                                         |
| Treatment      | Temp   | l r                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D.O.   | (mg/L)                                 | Salinii | ty (ppt)   | # Live O   | rganisms | 1                                                                                                       |
| (g KCl /L)     | (°C)   | new                | old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | new    | old                                    | new     | old        | A          | В        | SIGN-OFF                                                                                                |
| Control        | (9.3   | 7,73               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,4    |                                        | 29,6    |            | 5          | ى        | Date: 5/8/18                                                                                            |
| 0.5            | 19.3   | 7,73               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,2    |                                        | 29,7    |            | s i        | 5        | Test Solution (rep: 175-                                                                                |
| 1              | 19.2   | 7,72               | The second secon | 8.6    |                                        | 30,5    |            | 5          | S        | New WQ: 0///<br>Initiation Time: [635                                                                   |
| 2              | 19.2   | 7,69               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.6    |                                        | 31,7    |            | S          | 5        | Initiation Time: 1635                                                                                   |
| 3              | 19.1   | 7,71               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,4    |                                        | 33,     |            | 5          | .)       | Initiation Signoff: 1                                                                                   |
| 4              | 19.2   | 7,69               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,1    |                                        | 34,3    |            | S          | 5        | RT Stock Batch #: 56                                                                                    |
| Meter ID:      | 113A   | PHZ                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RDIO   |                                        | EC12    |            |            |          |                                                                                                         |
| Control        | 20,6   |                    | 7.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 6.5                                    |         | 30.1       | 5          | 5        | Date: 519118                                                                                            |
| 0.5            | 20.6   |                    | 7.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 6.4                                    |         | 30.9       | 5          | 5        | Count Time: 0915                                                                                        |
| 1              | 20.6   |                    | 7.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 6.4                                    |         | 37.6       | 5          | 5        | Count Signoff: Apr                                                                                      |
| 2              | 90.7   |                    | 7.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | U.Z                                    |         | 32.5       | 5          | 5        | Old WQ: MB                                                                                              |
| 3              | 20.7   |                    | -7.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 16·Z                                   |         | 33.7       | 0          | 0        |                                                                                                         |
| 4              | 20.6   |                    | 7.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 6.2                                    |         | 34.85      | 0          | 0        |                                                                                                         |
| Meter 1D:      | 113A   |                    | PHIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 2D12                                   |         | ECIN       |            |          |                                                                                                         |
| Control        | 20.8   |                    | 7.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 71                                     |         | 29.7       | 5          | 5        | Date: $\frac{5}{10}$ $\frac{3}{3}$<br>Count Time: $\frac{100}{100}$<br>Count Signoff: $\frac{100}{100}$ |
| 0.5            | 20.9   |                    | 7.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 7.1                                    |         | 30.4       | S          | 2        | Count Time: 1100                                                                                        |
| 1              | 20.9   |                    | 7.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 7.1                                    |         | 30,9       | 2          | S        | Count Signoff: We                                                                                       |
| 2              | 20.8   |                    | 7.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 7.1                                    |         | 31.2       | L          | S        | 011 WQ: F7                                                                                              |
| 3              |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | <u> </u>                               |         |            | -          |          |                                                                                                         |
| 4              | _      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                        |         | -          | —          | ·······  |                                                                                                         |
| Meter ID:      | 113A   |                    | pH19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | RDII                                   |         | EC.13      |            |          |                                                                                                         |
| Control        | 10.0   |                    | 7.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 7.7/                                   |         | 20.0       | 5          | 5        | Date: S/1/18                                                                                            |
| 0.5            | 20.6   |                    | 7.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 2.3                                    |         | ZD.7       | 5          | 5        | Count Time: 0444                                                                                        |
| 1              | 20.0   |                    | 7.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 7.3                                    |         | 31.2       | 5          | 5        | Count Signoff: M/S                                                                                      |
| 2              | 20.6   |                    | 7.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 7.2                                    |         | 32.3       | Ц          | 5        | Old WQ: P                                                                                               |
| 3              |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                        |         |            | ~          |          |                                                                                                         |
| 4              |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | *******                                |         |            |            |          |                                                                                                         |
| Meter ID:      | 107A   | Juno ang sengangan | DH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | ADID.                                  |         | ECIU       |            |          |                                                                                                         |
| Control        | 20.6   |                    | 7.1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 7.17                                   |         | 29.7       | 5          | 5        | Date: 5/12/18                                                                                           |
| 0.5            | 20.6   |                    | 1.654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | <u>-7 Ì</u>                            |         | 30.4       | 5          | 5        | Termination Time: 1514<br>Termination Signoff: DP                                                       |
| 1              | 20.6   |                    | 71.4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 7.1                                    |         | 30.4       | 5          | <u>_</u> |                                                                                                         |
| 2              | 20.2   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | <u></u>                                |         | 32.0       | Ź          |          | Old WQ: RAP                                                                                             |
| 3              |        |                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |         |            |            |          |                                                                                                         |
| 4              |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                        |         |            | THE STREET |          |                                                                                                         |
| Meter ID:      | 81A    |                    | 2419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | edil                                   |         | 643        |            |          |                                                                                                         |

## Appendix G

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the DU1-Comp Modified Elutriate Test (MET) Sediment Elutriate to Mysids (*Americamysis bahia*)

| CETIS Summa                                   | ary Repo                           | ort   |                                              |                                                                    |                                     |                                     |                              | ort Date:<br>Code: | 23                                                 | -            | 25 (p 1 of 1)<br>4-5663-738           |  |  |
|-----------------------------------------------|------------------------------------|-------|----------------------------------------------|--------------------------------------------------------------------|-------------------------------------|-------------------------------------|------------------------------|--------------------|----------------------------------------------------|--------------|---------------------------------------|--|--|
| Acute Mysid Surv                              | ival Test                          |       |                                              |                                                                    |                                     |                                     |                              |                    |                                                    | Paci         | fic EcoRisk                           |  |  |
|                                               |                                    | 5     | Species: A                                   | Survival (96h)<br>PA-821-R-02-<br>mericamysis i<br>Iguatic Indicat | bahia                               |                                     | Anal<br>Dilu<br>Brin<br>Age: | ent: N             | shleigh Findle<br>lot Applicable<br>lot Applicable | У            |                                       |  |  |
| Sample Code                                   | Sample I                           | D :   | Sample Date                                  | Receip                                                             | t Date                              | Sample Ag                           | e Cliei                      | ient Name          |                                                    | roject       | · · · · · · · · · · · · · · · · · · · |  |  |
| FVFT_0518AB_C1<br>Site Water<br>DU-1-COMP-MET | 02-6994-<br>00-0997-2<br>08-7624-5 | 2020  | 10 May-18 16<br>02 May-18 14<br>03 May-18 09 | :00 03 May                                                         | -18 16:00<br>-18 12:04<br>-18 12:04 | n/a (20.5 °C<br>8d 2h (4.1<br>7d 7h | CLE                          | Enginee            |                                                    |              |                                       |  |  |
| Sample Code                                   | Material                           | Гуре  | S                                            | ample Sourc                                                        | e                                   | Sta                                 | ition Locati                 | ол                 | Lat/Long                                           |              |                                       |  |  |
| FVFT_0518AB_C1                                | Elutriate                          |       | C                                            | LE: Engineeri                                                      | ng                                  | LA                                  | BQA                          |                    |                                                    |              |                                       |  |  |
| Site Water                                    | Site Wate                          | er.   | C                                            | LE: Engineeri                                                      | Site                                | e Water                             |                              |                    |                                                    |              |                                       |  |  |
| DU-1-COMP-MET                                 | Elutriate                          |       | С                                            | LE: Engineeri                                                      | ng                                  | DU                                  | 11                           |                    |                                                    |              |                                       |  |  |
| Single Compariso                              | n Summan                           | V     | · · · · · · · · · ·                          |                                                                    |                                     |                                     |                              |                    |                                                    | ······       |                                       |  |  |
| Analysis ID End                               | point                              |       | Compai                                       | rison Method                                                       |                                     |                                     | P-Value                      | Compa              | rison Result                                       |              |                                       |  |  |
| 03-1876-7835 96h                              | Survival Ra                        | ite   | Wilcoxo                                      | n Rank Sum T                                                       | wo-Sample                           | e Test                              | 1.0000                       | Site Wa            | ater passed 96                                     | h survival i | rate                                  |  |  |
| 10-1986-0359 96h                              | Survival Ra                        | ite   | Wilcoxo                                      | n Rank Sum T                                                       | wo-Sample                           | e Test                              | 1.0000                       | DU-1-C             | OMP-MET pa                                         | ssed 96h s   | urvival rate                          |  |  |
| 96h Survival Rate                             | Summary                            |       |                                              |                                                                    |                                     |                                     |                              |                    |                                                    | ******       |                                       |  |  |
| Sample                                        | Code                               | Count | Mean                                         | 95% LCL                                                            | 95% UCL                             | Min                                 | Max                          | Std Err            | Std Dev                                            | CV%          | %Effect                               |  |  |
| FVFT_0518AB_C1                                | LW                                 | 5     | 1.000                                        | 1.000                                                              | 1.000                               | 1.000                               | 1.000                        | 0.000              | 0.000                                              | 0.00%        | 0.00%                                 |  |  |
| Site Water                                    |                                    | 5     | 1.000                                        | 1.000                                                              | 1.000                               | 1.000                               | 1.000                        | 0.000              | 0.000                                              | 0.00%        | 0.00%                                 |  |  |
| DU-1-COMP-MET                                 |                                    | 5     | 1.000                                        | 1.000                                                              | 1.000                               | 1.000                               | 1.000                        | 0.000              | 0.000                                              | 0.00%        | 0.00%                                 |  |  |
| 96h Survival Rate                             | Detail                             |       |                                              |                                                                    |                                     |                                     |                              |                    |                                                    |              |                                       |  |  |
| Sample                                        | Code                               | Rep 1 | Rep 2                                        | Rep 3                                                              | Rep 4                               | Rep 5                               |                              |                    |                                                    |              |                                       |  |  |
| FVFT_0518AB_C1                                | LW                                 | 1.000 | 1.000                                        | 1.000                                                              | 1.000                               | 1.000                               |                              |                    |                                                    |              |                                       |  |  |
| Site Water                                    |                                    | 1.000 | 1.000                                        | 1.000                                                              | 1.000                               | 1.000                               |                              |                    |                                                    |              |                                       |  |  |
| DU-1-COMP-MET                                 |                                    | 1.000 | 1.000                                        | 1.000                                                              | 1.000                               | 1.000                               |                              |                    |                                                    |              |                                       |  |  |
| 96h Survival Rate                             | Binomials                          |       |                                              |                                                                    |                                     |                                     |                              |                    |                                                    |              |                                       |  |  |
| Sample                                        | Code                               | Rep 1 | Rep 2                                        | Rep 3                                                              | Rep 4                               | Rep 5                               |                              |                    |                                                    |              |                                       |  |  |
| FVFT_0518AB_C1                                | ŁW                                 | 10/10 | 10/10                                        | 10/10                                                              | 10/10                               | 10/10                               |                              |                    | ·····                                              |              |                                       |  |  |
|                                               |                                    | 10/10 | 10/10                                        | 10/10                                                              | 10/10                               | 10/10                               |                              |                    |                                                    |              |                                       |  |  |
| Site Water                                    |                                    | 10/10 | 10/10                                        | 10/10                                                              | 10/10                               | 10/10                               |                              |                    |                                                    |              |                                       |  |  |

42/54

| CETIS Analyti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cal Rep                | ort        |           |               |           |           |          | ort Date:<br>Code:                                                                              | 23                     | -                                      | 25 (p 2 of 2<br>14-5663-738 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|-----------|---------------|-----------|-----------|----------|-------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|-----------------------------|
| Acute Mysid Survi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | val Test               |            |           |               |           |           |          | ******                                                                                          |                        | Paci                                   | fic EcoRisi                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1986-0359<br>May-18 11 |            |           | h Survival Ra |           | ę         |          | S Version<br>ial Result                                                                         |                        | .9.2                                   |                             |
| Wilcoxon Rank Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | im Two-Sa              | ample Test |           |               |           |           |          |                                                                                                 |                        |                                        |                             |
| Sample I vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample                 | 11         | Test Stat | Critical      | Ties DF   | P-Type    | P-Value  | Decision                                                                                        | n(α:5%)                |                                        |                             |
| Lab Water Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DU-1-CC                | MP-MET     | 27.5      | n/a           | 1 8       | Exact     | 1.0000   | Non-Sigr                                                                                        | nificant Effec         | t                                      |                             |
| ANOVA Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |            |           |               |           |           | <u></u>  |                                                                                                 |                        |                                        |                             |
| Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sum Sq                 | uares      | Mean Sq   | uare          | DF        | F Stat    | P-Value  | Decision                                                                                        | n(a:5%)                |                                        |                             |
| Between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                      | ·····      | 0         |               | 1         | 65500     | <1.0E-37 | Significa                                                                                       | nt Effect              |                                        |                             |
| Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                      |            | 0         |               | 8         |           |          | _                                                                                               |                        |                                        |                             |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                      |            |           |               | 9         |           |          |                                                                                                 |                        |                                        |                             |
| 96h Survival Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Summary                |            |           |               |           |           |          |                                                                                                 |                        |                                        |                             |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Code                   | Count      | Mean      | 95% LCL       | 95% UCL   | Median    | Min      | Max                                                                                             | Std Err                | CV%                                    | %Effect                     |
| FVFT_0518AB_C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LW                     | 5          | 1.000     | 1.000         | 1.000     | 1.000     | 1.000    | 1.000                                                                                           | 0.000                  | 0.00%                                  | 0.00%                       |
| DU-1-COMP-MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 5          | 1.000     | 1.000         | 1.000     | 1.000     | 1.000    | 1.000                                                                                           | 0.000                  | 0.00%                                  | 0.00%                       |
| Angular (Corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I) Transfo             | rmed Sumn  | nary      |               |           |           | ·····    |                                                                                                 |                        |                                        |                             |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Code                   | Count      | Mean      | 95% LCL       | 95% UCL   | Median    | Min      | Max                                                                                             | Std Err                | CV%                                    | %Effect                     |
| FVFT_0518AB_C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŁW                     | 5          | 1.41      | 1.41          | 1.41      | 1.41      | 1.41     | 1.41                                                                                            | 0                      | 0.00%                                  | 0.00%                       |
| DU-1-COMP-MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 5          | 1.41      | 1.41          | 1.41      | 1.41      | 1.41     | 1.41                                                                                            | 0                      | 0.00%                                  | 0.00%                       |
| Graphics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |            |           |               | *****     |           |          |                                                                                                 |                        |                                        |                             |
| 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                      |            |           |               |           | 1,05-00   |          |                                                                                                 |                        |                                        |                             |
| 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                      |            | ₿.        |               |           |           |          | ÷                                                                                               |                        |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |            |           |               |           |           |          |                                                                                                 |                        |                                        |                             |
| 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |            |           |               |           | 7.95-0 ;  |          |                                                                                                 |                        |                                        |                             |
| 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |            |           |               | ž.        | ¥.        |          | +                                                                                               |                        |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |            |           |               | Contrated | £         |          |                                                                                                 |                        |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |            |           |               | Q.        | 5,00-01   |          | 1                                                                                               |                        |                                        |                             |
| 14<br>14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |            |           |               |           |           |          |                                                                                                 |                        |                                        |                             |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |            |           |               |           |           |          | :                                                                                               |                        |                                        |                             |
| 50 0.0<br>10 0.0 |                        |            |           |               |           |           |          | :                                                                                               |                        |                                        |                             |
| 02<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |            |           |               |           |           |          | :<br> <br> <br> <br> <br>                                                                       |                        |                                        |                             |
| 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |            |           |               |           | 2.5E-01 · |          | :<br> <br> <br> <br> <br> <br> <br> <br> <br> <br>                                              |                        |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |            |           |               |           |           |          |                                                                                                 |                        |                                        |                             |
| 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |            |           |               |           |           |          |                                                                                                 |                        |                                        |                             |
| 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PV7T_0535408_C(        |            | Ŀs-co⊮s   |               |           |           | <b>ģ</b> | :<br> <br> | @ <u>\$</u><br>0 0.5 1 | •••••••••••••••••••••••••••••••••••••• | <br>2.9                     |

| Analyst AP- | R6 |
|-------------|----|
| ł           |    |

| Client:<br>Test Material:                            |               | OTH CLE                                                                                                                                                                                                                            | i: Vallejo Fe<br>Composite |               | <u>u</u>      | an thair<br>An thair | c                | Organisı<br>Organism ( |           |           |              | Age:<br>uatic Ind | DAU 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|---------------|----------------------|------------------|------------------------|-----------|-----------|--------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test ID#:                                            |               | 133                                                                                                                                                                                                                                |                            | 288           | 39            |                      | -                | ~                      | /Diluent: |           | US           | ppt               | Custal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Date:                                           |               | IVIIB                                                                                                                                                                                                                              |                            | fomization:   |               | 2                    | Co               | ntrol Wat              | er Batch: | c is      |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                      | Do r          | 1Hz = 3                                                                                                                                                                                                                            |                            |               |               |                      |                  |                        | ····      |           |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                      | Теппр         | j.                                                                                                                                                                                                                                 | 12                         | <b>D.O.</b> ( | mad i         | Salinii              | v (ppt)          |                        | # Li      | ve Organi | SIDS         |                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Treatment                                            | (°C)          | <u>)"</u>                                                                                                                                                                                                                          |                            |               |               |                      |                  |                        |           |           | 5.5 °        |                   | SIGN-OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                      |               | BEW                                                                                                                                                                                                                                | old<br>Selected            | Rew           | old<br>QHHIMA | new                  | old<br>Dialaith  | Rep A                  |           |           | Rep D        | Rep E             | Test Solution Prep:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lab Control                                          | 20.5          | 8.05                                                                                                                                                                                                                               | and an and a second        | 77            |               | 24.2                 |                  | ٥ <u>ن</u>             | 10        | ۶D        | 10           | 10                | New WQ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100%                                                 | 20.1          | 8.11                                                                                                                                                                                                                               |                            | 8 ij -        |               | 24.5                 |                  | 10                     | 10        | 10        | 10           | 10                | V4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | Initiation Date:<br>5/10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | Initizion Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | Initiation Signoff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | am Fording Signoff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Meter ID                                             | 1070A         | Ph19-                                                                                                                                                                                                                              |                            | popil         |               | EUZ                  |                  |                        |           |           |              |                   | p.m. Fexting Signoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lab Control                                          |               |                                                                                                                                                                                                                                    |                            | *****         | 1             |                      | 24-6             | 10                     | 10        | (0        | 10           | (৩                | Count Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                      | 70.2          |                                                                                                                                                                                                                                    | 7.66                       |               | 10-10<br>17 5 |                      | 17-10            |                        | ·         | 1.00      |              |                   | 5 [ 1 ] []<br>Count Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 100%                                                 | 1 <b>9</b> .9 |                                                                                                                                                                                                                                    | 805                        |               | 7.            |                      | 74 7             | 10                     | 12        |           | 10           | 0                 | 112.0<br>Count Signoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | old WQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | am. Feeding Signoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | p.m. Feeding Signoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | upun fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Meter ID                                             | 100A          |                                                                                                                                                                                                                                    | 742                        |               | PANIO         |                      | ECID.            |                        |           |           |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lab Control                                          | 20.2          | -                                                                                                                                                                                                                                  | 7.62                       |               | 6.1           |                      | 24.              | 10                     | 10        | 10        | 10           | 0)                | Count Date:<br>5/12/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100%                                                 | 20.0          |                                                                                                                                                                                                                                    | 7.81                       |               | 6.3           |                      | 25.3             | 10                     | 10        | 10        | 10           | 10                | Coant Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | Count Signoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                      |               | nisti di la companya di seconda d<br>Seconda di seconda di se |                            |               |               |                      |                  | E an an an             |           |           |              |                   | SMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | am. Feeding Signoff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | TK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Meter ID                                             | 113A          |                                                                                                                                                                                                                                    | PHIA                       |               | Rail          |                      | 8613             |                        |           |           |              |                   | p.m. Feeding Signaff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lab Control                                          | 19.7          |                                                                                                                                                                                                                                    | 150                        |               | 49            |                      | ગૃત લ            | tip                    | 117       | 10        | 10           | 10                | Count Date:<br>Sligli #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                      | [             |                                                                                                                                                                                                                                    | 7.85                       |               |               |                      | 25.4             | 1                      | ·         |           | 10           | 10                | 0.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 100%<br>52020-01-01-01-01-01-01-01-01-01-01-01-01-01 | 19.5          |                                                                                                                                                                                                                                    | 1.00<br>1.50               |               | 6.0           |                      | 9***<br>1045-064 | 10)<br>1000            | 10<br>    |           |              |                   | Orged Si<br>Coant Signaff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | Count Signaff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | oil wosiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | an Festing Signoff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Meter ID                                             | 10.00         |                                                                                                                                                                                                                                    | hters                      |               |               |                      | 1999             |                        |           |           |              |                   | p.m. Fachting Solution<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                      | 1136          |                                                                                                                                                                                                                                    | VHVA<br>TV                 |               | 1701          |                      | E(12             |                        |           |           |              |                   | Tempor Dav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lab Control                                          | 19.1          |                                                                                                                                                                                                                                    | 7.55                       |               | 7.2           |                      | 256              | 10                     | 10        | 10        | 10           | 10                | Temporen Data<br>5/14/14<br>Temporen Dros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 160%a                                                | 195           |                                                                                                                                                                                                                                    | 9.02                       |               | 7.0           |                      | 262              | 10                     | 10        | 16        | 10           | 10                | Terranakon Sama<br>1915<br>Terranakon SamaT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | Termination Signal<br>"11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                      |               |                                                                                                                                                                                                                                    |                            |               |               |                      |                  |                        |           |           |              |                   | Cong wó . / (<br>/ (<br>_ / (<br>) ) (<br>) ) (<br>) (<br>) (<br>) (<br>) ) (<br>) ( |
|                                                      |               |                                                                                                                                                                                                                                    | 0471                       |               |               |                      |                  |                        |           |           |              |                   | a.m. Feeding Signoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Meter ID                                             | 1001          |                                                                                                                                                                                                                                    | PHZI                       |               | ROP           |                      | ECII             | 目前演                    |           | <u> (</u> | <u>pakin</u> | 同時期               | TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### 96 Hour Acute Americamysis bahia Water Column Toxicity Test

| CETIS Analyti                                                                                                                                                | va nopi      | WE %     |              |                                        |             |           | Repo     | Code:                                                                                            |                                       | 7813310                               | 25 (p 1 of 1<br>4-5663-738 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|--------------|----------------------------------------|-------------|-----------|----------|--------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------|
| Acute Mysid Survi                                                                                                                                            | ival Test    |          | ۵            |                                        |             |           | 1631     | 0006.                                                                                            |                                       | · · · · · · · · · · · · · · · · · · · | fic EcoRis                 |
| Analysis ID: 03-                                                                                                                                             | 1876-7835    | Fr       | ndpoint: 96h | Survival Ra                            |             |           | CET      | S Version:                                                                                       | CETISv1                               |                                       |                            |
| *                                                                                                                                                            | May-18 11:   |          | -            |                                        | Two Sample  | 3         |          | ial Results                                                                                      |                                       | 1. yir, 16,.                          |                            |
| Wilcoxon Rank Su                                                                                                                                             |              |          | ·····        |                                        |             |           |          |                                                                                                  |                                       | ·····                                 |                            |
| Sample I vs                                                                                                                                                  | Sample II    |          | Test Stat    | Critical                               | Ties DF     | P-Type    | P-Value  | Decision                                                                                         | (a:5%)                                |                                       |                            |
| Lab Water Control                                                                                                                                            | Site Wate    |          | 27.5         | n/a                                    | 1 8         | Exact     | 1.0000   |                                                                                                  | ificant Effeci                        | t                                     |                            |
| ANOVA Table                                                                                                                                                  |              |          |              |                                        |             |           |          |                                                                                                  |                                       |                                       | <u> </u>                   |
| Source                                                                                                                                                       | Sum Squa     | ares     | Mean Squ     | are                                    | DF          | F Stat    | P-Value  | Decision                                                                                         | (a:5%)                                |                                       |                            |
| Between                                                                                                                                                      | 0            |          | 0            |                                        | 1           | 65500     | <1.0E-37 | Significan                                                                                       |                                       |                                       |                            |
| Error                                                                                                                                                        | 0            |          | 0            |                                        | 8           |           |          | ·                                                                                                |                                       |                                       |                            |
| Total                                                                                                                                                        | 0            |          |              | ······································ | 9           |           |          |                                                                                                  |                                       |                                       |                            |
| 96h Survival Rate                                                                                                                                            | Summary      |          |              |                                        |             |           |          |                                                                                                  |                                       |                                       |                            |
| Sample                                                                                                                                                       | Code         | Count    | Mean         | 95% LCL                                | 95% UCL     | Median    | Min      | Max                                                                                              | Std Err                               | CV%                                   | %Effect                    |
| FVFT_0518AB_C1                                                                                                                                               | LW           | 5        | 1.000        | 1.000                                  | 1.000       | 1.000     | 1.000    | 1.000                                                                                            | 0.000                                 | 0.00%                                 | 0.00%                      |
| Site Water                                                                                                                                                   |              | 5        | 1.000        | 1.000                                  | 1.000       | 1.000     | 1.000    | 1.000                                                                                            | 0.000                                 | 0.00%                                 | 0.00%                      |
| Angular (Corrected                                                                                                                                           | d) Transfori | med Sumi | mary         |                                        |             | ·· · ···  |          |                                                                                                  |                                       |                                       |                            |
| Sample                                                                                                                                                       | Code         | Count    | Mean         | 95% LCL                                | 95% UCL     | Median    | Min      | Max                                                                                              | Std Err                               | CV%                                   | %Effect                    |
| FVFT_0518AB_C1                                                                                                                                               | LW           | 5        | 1.41         | 1.41                                   | 1.41        | 1.41      | 1.41     | 1.41                                                                                             | 0                                     | 0.00%                                 | 0.00%                      |
| Site Water                                                                                                                                                   |              | 5        | 1.41         | 1.41                                   | 1.41        | 1.41      | 1.41     | 1.41                                                                                             | 0                                     | 0.00%                                 | 0.00%                      |
| Graphics                                                                                                                                                     |              |          | <u></u>      | ·····                                  |             |           | ····.    |                                                                                                  |                                       |                                       |                            |
|                                                                                                                                                              |              |          |              |                                        |             |           |          |                                                                                                  |                                       |                                       |                            |
| 1.0                                                                                                                                                          |              |          | •            |                                        |             | 1.0E+00 . |          |                                                                                                  |                                       |                                       |                            |
|                                                                                                                                                              |              |          | •            |                                        |             | 1.0E+00   |          |                                                                                                  |                                       |                                       |                            |
| 1.0 ···<br>0.9                                                                                                                                               | •            |          | •            |                                        |             | 1.0E+00   |          |                                                                                                  |                                       |                                       |                            |
|                                                                                                                                                              | ٠            |          | •            |                                        |             |           |          | :<br>;<br>;                                                                                      |                                       |                                       |                            |
| 0.9                                                                                                                                                          | ٠            |          | •            |                                        |             | 7.5E-01   |          | :<br>- ,<br>- ,                                                                                  |                                       |                                       |                            |
| 0.9<br>0.5<br>5.7                                                                                                                                            | ¢            |          | ٠            |                                        | Skered      | 7.5E-01   |          |                                                                                                  |                                       |                                       |                            |
| 0.9<br>0.5<br>5.7                                                                                                                                            | •            |          | ٠            |                                        | Gentered    | 7.5E-01   |          |                                                                                                  |                                       |                                       |                            |
| 0.9<br>0.5<br>5.7                                                                                                                                            | •            |          | ٠            |                                        | Centered    | 7.5E-01   | 7        |                                                                                                  |                                       | ·                                     |                            |
| 0.9<br>0.5<br>5.7                                                                                                                                            | •            |          | ٠            |                                        | Gentered    | 7.5E-01   |          |                                                                                                  |                                       | ·                                     |                            |
| 0.9<br>0.5<br>¢.7<br>33 78<br>6<br>9<br>5<br>5<br>5<br>5<br>6<br>9<br>6<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8 | •            |          | •            |                                        | Clenkkered  | 7.5E-01   | ч        |                                                                                                  |                                       |                                       |                            |
| 0.9<br>8.5<br>5.7                                                                                                                                            | •            |          | •            |                                        | Constrained | 7.5E-01   |          |                                                                                                  |                                       |                                       |                            |
| 0.9<br>0.5<br>¢.7<br>33 78<br>6<br>9<br>5<br>5<br>5<br>5<br>6<br>9<br>6<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8 | •            |          | •            |                                        | Gentiered   | 755-01    |          |                                                                                                  |                                       |                                       |                            |
| 0.9<br>0.5<br>0.7<br>0.5<br>0.5<br>0.5<br>0.4<br>0.3                                                                                                         | •            |          | •            |                                        | Gestitered  | 755-01    | 19       |                                                                                                  |                                       |                                       |                            |
| 0.9<br>0.5<br>c.7<br>30.5<br>c.5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>6<br>6<br>0.4<br>0.3<br>0.2                                                 | •            |          | •            |                                        | Gestikered  | 755-01    | ور       | :<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>; | چــــــــــــــــــــــــــــــــــــ | 2 15                                  | ;<br>20                    |

| ł        |         |
|----------|---------|
|          | RI.     |
| Analyst: | QA: IVU |

4

ş

.

| Client:        | FOTH (CLE): Vallejo Ferry Terminal | Organism Log #:      | 10944 Age: 5 Daus 5 |     |
|----------------|------------------------------------|----------------------|---------------------|-----|
| Test Material: | Site Water                         | Organism Supplier:   | Aquatic Indicators  | -   |
| Test ID#:      | 78133 Project # 28839              | Control/Diluent:     | 25 ppt impstal      | Sea |
| Test Date:     | 5/10/16 Randomization: 5,3,2       | Control Water Batch: | 1279                |     |
|                |                                    |                      |                     |     |
|                |                                    |                      |                     | 1   |

#### 96 Hour Acute Americanysis bahiaWater Column Toxicity Test

| Treatment   | Temp  | р     | 11    | D.C           | ). (mg/L) | Sahi | nity (ppt) |           | # Li  | ive Organ  | isms  | ,     | SIGN-OFF                                                                         |
|-------------|-------|-------|-------|---------------|-----------|------|------------|-----------|-------|------------|-------|-------|----------------------------------------------------------------------------------|
|             | (°C)  | new   | oid   | new           | ołd       | new  | old        | Rep A     | Rep B | Rep C      | Rep D | Rep E |                                                                                  |
| Lab Control | 20.5  | 3.05  |       | 77            | L         | 24   |            | 10        | 10    | 10         | 10    | 10    | Test Solution Prep.<br>SPF<br>New WQ:                                            |
| Site Water  | 26,2  | 8.14  |       | 8.5           |           | 24.3 |            | 10        | 10    | 10         | W     | iU    | New WQ:<br>Yu                                                                    |
|             |       |       |       |               |           |      |            |           |       |            |       |       | Initiation Date:<br>5110116                                                      |
|             |       |       |       |               |           |      |            |           |       |            |       |       | Initiation Time:                                                                 |
|             |       |       |       |               |           |      |            |           |       |            |       |       | Initiation/Signoff:                                                              |
|             |       |       |       |               |           |      |            |           |       |            |       |       | ara Feedbag Signoff<br>KL                                                        |
| Meter ID    | 1004  | P1919 |       | PDI           |           | EL13 |            |           |       |            |       |       | p.m. Feeding Signoff.                                                            |
| Lab Control | 20.2  |       | 7.66  |               | 66        |      | 24.6       | <u>io</u> | 10    | 10         | 10    | 10    | Count Date:<br>5 11 18                                                           |
| Site Water  | 20.3  |       | 7.85  |               | 67        |      | 25-1       | (^)       | 10    | 0]         | (0    | 10    | Court Tane:<br>1120                                                              |
|             |       |       |       |               |           |      |            |           |       |            |       |       | Coan Signoff:                                                                    |
|             |       |       |       |               |           |      |            |           |       |            |       |       | <sup>ohd wo</sup> P                                                              |
|             |       |       |       |               |           |      |            |           |       |            |       |       | a.m. Feeding Signoff<br>SMC                                                      |
|             |       |       |       |               |           |      |            |           |       |            |       |       | p.m. Feeding Signoff                                                             |
| Meter ID    | IN A  |       | DH21  |               | ADI (     | )    | EC/0       |           |       |            |       |       |                                                                                  |
| Lab Control | 20.2  |       | 7.62  |               | 6,1       |      | 24.8       | 10        | 0     | <u>(C)</u> | 10    | 10    | Count Date:<br>5/12/18                                                           |
| Site Water  | 20. / |       | 757   |               |           |      | 25.0       | 10        | 10    | 10         | 10    | (0    | Count Time:<br>                                                                  |
|             |       |       |       | ***<br>****** |           |      |            |           |       |            |       |       | Count Signoff<br>SMC<br>Old WO:                                                  |
|             |       |       |       |               |           |      |            |           |       |            |       |       | FT                                                                               |
|             |       |       |       | <u>.</u>      |           |      |            |           |       |            |       |       | am. Freeding Signoff.                                                            |
| Meter ID    | 113 A |       | PHIA  |               | RDI       |      | 6613       |           |       |            |       |       | p m Preding Signoff.                                                             |
| Lab Control | 19.7  |       | 7,50  |               | ન ન્ય     |      | 24.9       | 10        | 10    | 10         | 10    | ιu    | Count Date:<br>5/13/19                                                           |
| Site Water  | 19.7  |       | 7.90  |               | 6.6       |      | 25.3       | 0         | 10    | 10         | 0)    | 10    | Count Time:<br>0945                                                              |
|             |       |       |       |               |           |      |            |           |       |            |       |       | Count Signoff:                                                                   |
|             |       | ***** |       |               |           |      |            |           |       |            |       |       | 95compile                                                                        |
|             |       |       |       |               |           |      |            |           |       |            |       |       | a.m. Feeding Signoff.                                                            |
| Meter ID    | 113A  |       | PHIM  | detek dete    | par       |      | EUZ.       |           |       |            |       |       | p.m. Fording Signoff.                                                            |
| Lab Control | 19.7  |       | 7,45  |               | 7.2       |      | 25.6       | 16        | 10    | 10         | 10    | 10    | Termination Date:<br>5/14/16<br>Termination Time:<br>1415<br>Termination Signoff |
| Site Water  | 14.1  |       | 7.94  |               | 7.2       |      | 26.2       | 10        | 10    | 16         | 10    | 10    | 1415                                                                             |
|             |       |       |       |               |           |      |            |           |       |            |       |       | termunation Signoff:                                                             |
|             |       |       |       |               |           |      |            |           |       |            |       |       | Termination Signoff.<br>TTK<br>Old WQ KL                                         |
| Meter ID    | 100A  |       | P1721 |               | ROIO      |      | ECI)       |           |       |            |       |       | a.m. Feeding Signoff<br>TK                                                       |

# Appendix H

### Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Mysid, *Americamysis bahia*

| CETIS Sum                                                  | nmary Rep                                              | ort      |                                                |                                                                   |         |       |             | port Date<br>st Code: | : 23 M                                                  | Aay-18 08:3<br>78121   18 |               |
|------------------------------------------------------------|--------------------------------------------------------|----------|------------------------------------------------|-------------------------------------------------------------------|---------|-------|-------------|-----------------------|---------------------------------------------------------|---------------------------|---------------|
| Acute Mysid S                                              | iurvival Test                                          |          |                                                |                                                                   |         |       |             |                       |                                                         | Pacifi                    | c EcoRis      |
| Start Date:<br>Ending Date:                                | 17-1660-9487<br>10 May-18 16:<br>14 May-18 15:1<br>95h | 28<br>05 | Test Type:<br>Protocol:<br>Species:<br>Source: | Survival (96h)<br>EPA-821-R-02<br>Americamysis<br>Aquatic Indical | bahia   |       | DII         | uent: I<br>ne: I      | Ashleigh Findle;<br>Laboratory Wati<br>Crystal Sea<br>5 | •                         |               |
| Sample ID:<br>Sample Date:<br>Receipt Date:<br>Sample Age: | 10 May-18 16:2                                         | 28<br>28 | Code:<br>Material:<br>Source:<br>Station:      | KCL<br>Potassium chk<br>Reference Tox<br>In House                 |         |       |             |                       | Reference Toxic<br>28835                                | ant                       |               |
| Multiple Comp<br>Analysis ID<br>15-2652-8825               | Endpoint                                               | •        |                                                | parison Method<br>Many-One Rani                                   |         |       | NOEL<br>0.5 | LOEL<br>> 0.5         | TOEL                                                    | ти                        | PMSD<br>12.7% |
| Point Estimate                                             | ······                                                 |          | 0,003                                          |                                                                   |         |       |             | - 0.0                 | 194 <b>0</b>                                            |                           | ¥£. ( 70      |
|                                                            | Endpoint                                               |          | Point                                          | Estimate Meth                                                     | od      |       | Level       | g/L                   | 95% LCL                                                 | 95% UCL                   | TU            |
| 05-1953-8969                                               | 96h Survival Ra                                        | ate      | Trimm                                          | ied Spearman-F                                                    | (ärber  |       | EC50        | 0.606                 | 0.549                                                   | 0.668                     |               |
| 96h Survival R                                             | ate Summary                                            |          |                                                |                                                                   |         |       |             |                       |                                                         |                           |               |
| Conc-g/L                                                   | Code                                                   | Count    | Mean                                           | 95% LCL                                                           | 95% UCL | Min   | Max         | Std Er                | r Std Dev                                               | CV%                       | %Effect       |
| 0                                                          | LW                                                     | 4        | 1.000                                          | 1.000                                                             | 1.000   | 1.000 | 1.000       | 0.000                 | 0.000                                                   | 0.00%                     | 0.00%         |
| 0.125                                                      |                                                        | 4        | 0.975                                          | 0.895                                                             | 1.000   | 0.900 | 1.000       | 0.025                 | 0.050                                                   | 5.13%                     | 2.50%         |
| 0.25                                                       |                                                        | 4        | 0.975                                          | 0.895                                                             | 1.000   | 0.900 | 1.000       | 0.025                 | 0.050                                                   | 5.13%                     | 2.50%         |
| 0.5                                                        |                                                        | 4        | 0.775                                          | 0,503                                                             | 1.000   | 0.600 | 1.000       | 0.085                 | 0.171                                                   | 22.04%                    | 22.50%        |
| 1                                                          |                                                        | 4        | 0.000                                          | 0.000                                                             | 0.000   | 0.000 | 0.000       | 0.000                 | 0.000                                                   |                           | 108.00%       |
| 2                                                          |                                                        | 4        | 0.000                                          | 0.000                                                             | 0.000   | 0.000 | 0.000       | 0.000                 | 0.000                                                   |                           | 100.00%       |
| 96h Survival R                                             | ate Detail                                             |          |                                                |                                                                   |         |       |             |                       |                                                         |                           |               |
| Conc-g/L                                                   | Code                                                   | Rep 1    | Rep 2                                          | Rep 3                                                             | Rep 4   |       |             |                       |                                                         |                           |               |
| 0                                                          | LW                                                     | 1.000    | 1.000                                          | 1.000                                                             | 1.000   |       |             |                       |                                                         |                           |               |
| 0.125                                                      |                                                        | 1.000    | 1.000                                          | 0.900                                                             | 1.000   |       |             |                       |                                                         |                           |               |
| 0.25                                                       |                                                        | 1,800    | 1.000                                          | 0.900                                                             | 1.800   |       |             |                       |                                                         |                           |               |
| 0.5                                                        |                                                        | 0.600    | 0.700                                          | 1.000                                                             | 0.800   |       |             |                       |                                                         |                           |               |
| 1                                                          |                                                        | 0.000    | 0.000                                          | 0.000                                                             | 0.000   |       |             |                       |                                                         |                           |               |
| 2                                                          |                                                        | 0.000    | 0.000                                          | 0.000                                                             | 0.000   |       |             |                       |                                                         |                           |               |
| 96h Survival R                                             | ate Binomials                                          |          |                                                |                                                                   |         |       |             |                       |                                                         |                           |               |
| Conc-g/L                                                   | Code                                                   | Rep 1    | Rep 2                                          | Rep 3                                                             | Rep 4   |       |             |                       |                                                         |                           |               |
| 0                                                          | ŁW                                                     | 10/10    | 10/10                                          | 10/10                                                             | 10/10   |       |             |                       |                                                         |                           |               |
| 0.125                                                      |                                                        | 10/10    | 10/10                                          | 9/10                                                              | 10/10   |       |             |                       |                                                         |                           |               |
| 0.25                                                       |                                                        | 10/10    | 10/10                                          | 9/10                                                              | 10/10   |       |             |                       |                                                         |                           |               |
| 0.5                                                        |                                                        | 6/10     | 7/10                                           | 10/10                                                             | 8/10    |       |             |                       |                                                         |                           |               |
| 1                                                          |                                                        | 0/10     | 0/10                                           | 0/10                                                              | 0/10    |       |             |                       |                                                         |                           |               |
| Ż                                                          |                                                        | 0/10     | 0/10                                           | 0/10                                                              | 0/10    |       |             |                       |                                                         |                           |               |

1

| Acute Mysi                  | d Surviv           | al Tes        | st   |         |    |        |                    |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |      |    |                  |                                      |        |       |                    | Pacific Ec | :oRid |
|-----------------------------|--------------------|---------------|------|---------|----|--------|--------------------|------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|------|----|------------------|--------------------------------------|--------|-------|--------------------|------------|-------|
| Test Type:<br>Protocol:     | Survival<br>EPA-82 |               |      | (2002   | 2) |        | rganism<br>ndpoint |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ia (M) | /sid)  |      |    | terial:<br>urce: |                                      |        |       | hloride<br>oxicant | -REF       |       |
|                             |                    |               |      |         |    |        |                    | 4          | Acute I           | 4ysid S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kerviva | Test   |        |      |    |                  |                                      |        |       |                    |            |       |
|                             | 0,8                |               |      |         |    |        |                    |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |      |    |                  |                                      |        |       |                    | +3\$       |       |
|                             | 0.7                |               |      |         |    |        |                    |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        | . •    |      | -  |                  |                                      |        |       | ·                  | · · · +2s  |       |
|                             | 0.6                |               |      |         | _  |        | <b>e</b>           | <b>8</b>   |                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        | ø      |      |    |                  |                                      | -      |       |                    | ø          |       |
| loride                      | 4.5-               | -             |      |         |    |        | /                  | i)<br>I    | $\langle \rangle$ | and the second s | -       |        | /      |      |    |                  | · · · · · <del>· · · ·</del> · · · · | ````   |       | ·j                 | Mean       |       |
| ECS0-3/L Potassium chioride | 0.0 🚓              |               | ,    | <u></u> |    |        |                    |            | S.                | · •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ¥       | V      |        |      | u. |                  |                                      |        |       |                    |            |       |
| adoff 1/R                   | 73-                | ~~~ <b>\$</b> |      |         |    |        |                    |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |      |    |                  |                                      |        | ·· ·· |                    | _          |       |
| ES.                         |                    |               |      |         |    |        |                    | . <b>.</b> | ··· -             | .A .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | - • •  | ·      |      |    |                  |                                      |        |       |                    | -24        |       |
|                             | 0.2                |               |      |         |    |        |                    |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ·      | محمر   |      |    |                  |                                      |        |       |                    | -3s        |       |
|                             | 03                 |               |      |         |    |        | • *                |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |      |    |                  |                                      |        |       |                    |            |       |
|                             | 0.0<br>1           | 2             | 3    | 4       | 2  | 6      | 7                  | 8          | 9                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31      | 12     | 13     | 14   | 15 | 16               | 17                                   | 18     | 19    | 20                 | 21         |       |
|                             | Me                 | an:           | 0.50 | 09      | (  | Count: | 20                 |            |                   | ~25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : Wan   | ning l | _imit: | 0.30 | 54 | -3s              | Actic                                | on Lin | nít:  | 0.2077             | ,          |       |
|                             | Q1/                | gma:          | 0.09 | 774     |    | CV:    | 19.50              | 1%         |                   | +20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Warr    | dea l  | imit   | 0.69 | 64 | +3e              | Antis                                |        |       | 0.7941             |            |       |

| Point | Year | Month | Day | Time  | QC Data | Deita    | Sigma   | Warning | Action | Test ID      | Analysis ID  |
|-------|------|-------|-----|-------|---------|----------|---------|---------|--------|--------------|--------------|
| 1     | 2017 | Apr   | 12  | 16:45 | 0.3874  | -0.1135  | -1.161  |         |        | 00-6148-3874 | 19-8487-9804 |
| 2     |      | May   | 3   | 15:30 | 0.3551  | -0.1448  | -1.481  |         |        | 05-6474-5258 | 11-7172-7748 |
| 3     |      |       | 10  | 14:50 | 0.335   | -0.1659  | -1.697  |         |        | 00-3122-2987 | 17-4835-2736 |
| 4     |      |       | 17  | 16:05 | 0.4609  | -0.04004 | -0.4097 |         |        | 10-4194-8591 | 14-6825-2260 |
| 5     |      |       | 24  | 15:10 | 0.4289  | -0.072   | -0.7367 |         |        | 15-5679-3603 | 12-2883-7801 |
| 6     |      | Jun   | 7   | 16:20 | 0.4534  | -0.04746 | -0.4856 |         |        | 12-9007-8543 | 13-6508-7876 |
| 7     |      |       | 14  | 0:00  | 0.6154  | 0.1145   | 1.172   |         |        | 01-3737-6724 | 15-2602-8100 |
| 8     |      | Aug   | 10  | 14:30 | 0.6145  | 0.1136   | 1.162   |         |        | 19-9688-6818 | 09-2359-7727 |
| 9     |      |       | 31  | 16:00 | 0.4467  | -0.05418 | -0.5543 |         |        | 18-4672-5904 | 10-0539-7926 |
| 10    |      | Sep   | 14  | 14:50 | 0.5625  | 0.06165  | 0.6307  |         |        | 20-4974-5839 | 15-5996-4331 |
| 11    |      | Nov   | 2   | 13:50 | 0.5184  | 0.01752  | 0.1792  |         |        | 19-7762-9071 | 12-2459-8595 |
| 12    |      |       | 29  | 15:50 | 0.4012  | -0.09969 | -1.02   |         |        | 13-9037-7762 | 17-8506-5280 |
| 13    | 2018 | Jan   | 18  | 16:34 | 0.5946  | 0.0937   | 0.9587  |         |        | 09-4031-9316 | 09-9985-4118 |
| 14    |      |       | 25  | 15:57 | 0.6484  | 0.1475   | 1.509   |         |        | 07-2068-4059 | 03-9446~1472 |
| 15    |      | Feb   | 22  | 15:36 | 0.4831  | -0.01781 | -0.1822 |         |        | 12-6599-5677 | 07-1180-8866 |
| 16    |      | Mar   | 8   | 14:36 | 0.583   | 0.08208  | 0.8398  |         |        | 19-8800-3981 | 08-0879-0164 |
| 17    |      |       | 21  | 15:45 | 0.6184  | 0.1175   | 1.203   |         |        | 12-0462-6609 | 19-4494-0515 |
| 18    |      | Apr   | 12  | 15:52 | 0.5946  | 0.0937   | 0.9587  |         |        | 12-4726-1936 | 21-1246-6632 |
| 19    |      |       | 26  | 16:36 | 0.5029  | 0.002046 | 0.02093 |         |        | 04-0425-3250 | 07-5752-7102 |
| 20    |      | May   | 3   | 15:58 | 0.4118  | -0.08913 | -0.9119 |         |        | 15-1458-0870 | 17-3212-9907 |
| 21    |      |       | 10  | 16:28 | 0.6057  | 0.1048   | 1.073   |         |        | 18-5396-7288 | 05-1953-8969 |

Analyst: Are QA: RG

001-771-848-3

**CETIS QC Plot** 

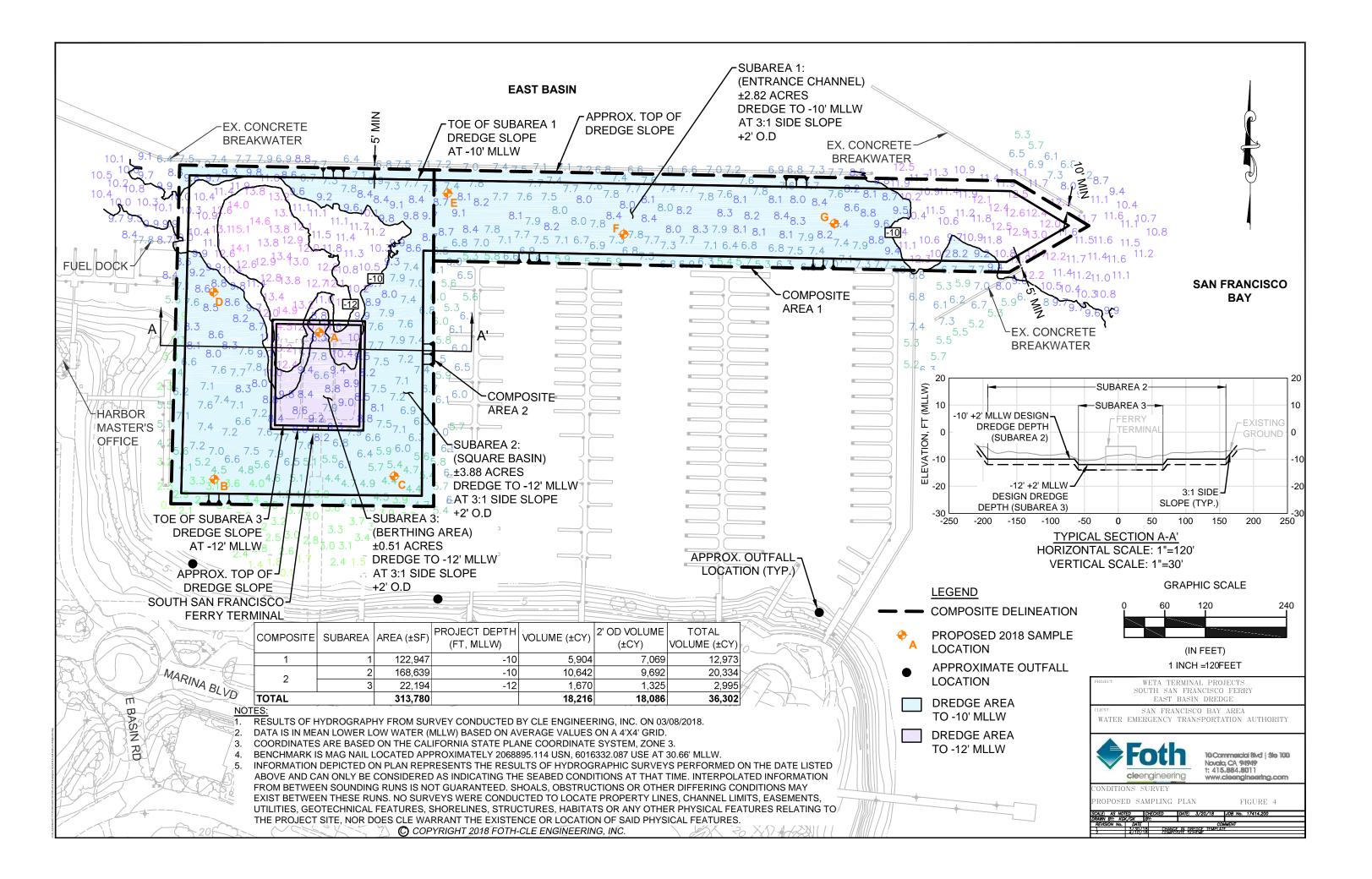
| Client         | Client: Reference Toxicant |       |          |            |                             |       |                           | sm Log #: | 10MM       | ব                                       | Age:        | 5 damp                                     |  |
|----------------|----------------------------|-------|----------|------------|-----------------------------|-------|---------------------------|-----------|------------|-----------------------------------------|-------------|--------------------------------------------|--|
| Test Material: |                            |       |          |            |                             | ••    |                           |           |            |                                         | quatic Indi | <u> </u>                                   |  |
| -              |                            | 121   |          |            | 835                         | a     |                           |           |            |                                         |             | @: 25 ppt                                  |  |
| Test Date:     | 5018                       | )<br> | Rando    | omization: |                             | •     | Control Water Batch: 1279 |           |            |                                         |             |                                            |  |
| Treatment      | Temp                       | jı    | H        | D.O.       | D.O. (mg/l.) Salinity (ppt) |       |                           |           |            | # Live Organisms SIGN-OF                |             |                                            |  |
| (g/L KCl)      | (°C)                       | new   | ald      | new        | eld                         | new   | old                       | Rep A     | Rep B      | Rep C                                   | Rep D       |                                            |  |
| Control        | 19.5                       | 8.09  |          | 7.6        |                             | 24.4  |                           | lo.       | 1D         | Þ                                       | ł           | Test Solution Prep:                        |  |
| 0.125          | 19.6                       | 8 09  |          | 7.7        |                             | 35-65 |                           | q         | W          | 10                                      | 10          | New WQ FT                                  |  |
| 0.25           | 19.8                       | 8.08  |          | 7.8        |                             | 24.6  |                           | 10        | 10         | P                                       | 10          | Initiation Dates 1018.<br>Initiation Times |  |
| 0.5            | 19.7                       | 8.06  |          | 8.0        |                             | 249   |                           | N         | D          | 10                                      | W           | Initiation Time                            |  |
| 1              | 19,7                       | 8.02  |          | 8.2        |                             | 25.3  |                           | Ø         | W          | Ŵ                                       | Ŵ           | initiation Signon:                         |  |
| 2              | 19.6                       | 7.93  |          | 9.2        |                             | 26.3  |                           | Į0        | <b>V</b> 0 | 10                                      | p           | R1 Batch #: 193                            |  |
| Meter ID       | 11014                      | pH 19 |          | R Dh       |                             | EC13  |                           |           |            |                                         |             | a.m. Feeding Signoff:                      |  |
|                |                            |       |          |            |                             |       |                           |           |            |                                         |             | p.m. Feeding Signal):                      |  |
| Control        | 19.9                       |       | 7.75     |            | 63                          |       | 24.5                      | 10        | 10         | 10                                      | 10          | Count Date: 11 18                          |  |
| 0.125          | 19.8                       |       | 7.14     |            | 6.3                         |       | 24.6                      | 10        | 10         | 16                                      | 10          | Count There is                             |  |
| 1              | 197                        |       | 7.74     |            | 68                          |       | 24.5                      | 10        | 10         | 10                                      | 10          | Count Signal                               |  |
| 0.5            | 19.6                       |       | 7.17     |            | 68                          |       | 25.0                      | 8         | 8          | 10                                      | 10          | Old WQ: FT                                 |  |
| 1              | 19.7                       |       | 7.69     |            | 6.7                         |       | 25.5                      | Ð         | 0          | 0                                       | 0           | sm(                                        |  |
| 2              | 19.7                       |       | 7.66     |            | 6.7                         |       | 26.5                      | 0         | 0          | Ð                                       | 0           | p.m. Feeding Signoff                       |  |
|                | 814                        |       | PHIS     |            | RDIL                        |       | 203                       |           |            |                                         |             |                                            |  |
| l'             | 20.2                       | 194   | 252      | 2.6        | 5.8                         | 24.2  | 25.1                      | 10        | 10         | 10                                      | 10          | Test Solution Peop                         |  |
| 0.125          | 20.1                       | 7.95  | 7.52     | 7.7        | h.0                         | 24.6  | 25.0                      | iD        | 10         | 10                                      | 10          | New WO.                                    |  |
| 0.25           | 20.2                       | 1.95  | 7.55     | 7.8        | 6.1                         | 24.7  | 25.1                      | 10        | 10         | 9                                       | 16          | Renewal Date /12/15                        |  |
|                | 20.0                       | 1.94  | 7.61     | 29         | 6.3                         | 25.0  | 25.4                      | ٦         | 7          | 10                                      | 8           | Ronewel Time:                              |  |
| 1              | _                          |       | -        |            |                             |       |                           |           |            | -                                       | -           | Renewal Signoff.                           |  |
| 2              |                            |       | -        | ~          | -                           | -     | -                         |           | -          |                                         | -           | Old WQ:                                    |  |
| Meter ID       | AOO                        | PH19  | DIZ      | 2N11       | DI/G                        | FEIZ  | EC10                      |           |            |                                         |             | a.m. Feeding Signoff:                      |  |
|                |                            |       |          |            |                             |       |                           | 1         |            |                                         |             | p.m. Feeding Signoff:                      |  |
|                |                            |       |          |            |                             |       |                           |           |            |                                         |             | RT Burch #: 193                            |  |
| Control        | 20.0                       |       | 7.67     |            | 6.5                         |       | 25.6                      | 10        | 10         | 10                                      | 10          | Count Date:<br>5/13/18                     |  |
| 0.125          | 20.0                       |       | 7.71     |            | 6.4                         |       | 25.7                      | 10        | 10         | 10                                      | 10          | Count Time:                                |  |
| 0.25           | 14.9                       |       | 7.65     |            | 6.0                         |       | 26.0                      | 10        | 10         | 9                                       | 10          | Count Signof                               |  |
| 0.5            | 19.7                       |       | 7.66     |            | 6.1                         |       | 26.1                      | 6         | 7          | 10                                      | 3           | old wo: BV                                 |  |
| 1              | -                          |       | <u> </u> |            |                             |       |                           |           |            |                                         |             | a.m. Feeding Signoff:                      |  |
| 2              |                            |       |          |            | -                           |       | -                         |           |            | -                                       |             | p.m. Fording Signoff:                      |  |
| Meter ID       | 113A                       |       | FA1Z1    |            | 2011                        |       | ECII                      |           |            |                                         |             |                                            |  |
| Control        | 19.9                       |       | 7.86     |            | 7.3                         |       | 25,3                      | 10        | 10         | 10                                      | 10          | Termination Date<br>5/14/14                |  |
|                | 19,7                       |       | 7.81     |            | 7.0                         |       | 26.0                      | 10        | 10         | 9                                       | 10          | Termination Line.                          |  |
| 0.125          | 195                        |       | 7,45     |            | 72                          |       | 25.9                      | 10        | 10         | 9                                       | 10          | Tenningtion Signoff:                       |  |
| 0.25           | 19.6                       |       | 7.61     |            | 7.2                         |       | 26,3                      | 6         | 7          | 10                                      | 8           | OH WO: KL                                  |  |
| 0.5            |                            |       |          |            |                             |       |                           | -         |            | -                                       |             | am. Feeding Signoff.                       |  |
| 1              |                            |       | -        |            |                             |       |                           |           |            |                                         |             |                                            |  |
| 2<br>Mater ID  | 100A                       |       | PHZI     |            | RIDIO                       |       | ECIN                      |           |            |                                         |             |                                            |  |
| Meter ID       | 1001                       |       | 11101    | 1858       | 1/1010                      |       | 1                         |           | 的影響        | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |             |                                            |  |

#### 96 Hour Acute Americamysis bahia Reference Toxicant Test

# Appendix I

### **Bioassay Standard Test Conditions**




|     | -                                     | ceptability Criteria for the Amphipod<br>D-Day Sediment Toxicity Test. |
|-----|---------------------------------------|------------------------------------------------------------------------|
| 1.  | Test type                             | Static non-renewal                                                     |
| 2.  | Test duration                         | 10 d                                                                   |
| 3.  | Temperature                           | 25 ± 1°C                                                               |
| 4.  | Salinity                              | $20 \pm 2$ ppt                                                         |
| 5.  | Light quality                         | Ambient Laboratory                                                     |
| 6.  | Light intensity                       | 50 – 100 ft candles                                                    |
| 7.  | Photoperiod                           | Continuous                                                             |
| 8.  | Test chamber size                     | 1 L                                                                    |
| 9.  | Seawater volume                       | 800 mL                                                                 |
| 10. | Sediment depth                        | 20 mm                                                                  |
| 11. | Renewal of seawater                   | None                                                                   |
| 12. | Age of test organisms                 | Young adults, 2-4 mm                                                   |
| 13. | # of organisms per test chamber       | 20                                                                     |
| 14. | # of replicate chambers/concentration | 5                                                                      |
| 15. | # of organisms per sediment type      | 100                                                                    |
| 16. | Feeding regime                        | None                                                                   |
| 17. | Test chamber cleaning                 | Lab washing prior to test                                              |
| 18. | Test solution aeration                | Low bubble (~100/minute)                                               |
| 19. | Overlying water                       | $1 \mu$ m-filtered seawater (at test salinity)                         |
| 20. | Test materials                        | Test sites, reference and control                                      |
| 21. | Dilution series                       | None                                                                   |
| 22. | Endpoint                              | % Survival                                                             |
| 23. | Sample holding requirements           | < 8 weeks                                                              |
| 24. | Sample volume required                | 4 L                                                                    |
| 25. | Test acceptability criteria           | $\geq$ 90% survival in the Control treatment                           |
| 26. | Reference toxicant results            | Within 2 SD of laboratory mean                                         |

|     |                                       | tability Criteria for the Marine Polychaete<br>0-Day Sediment Toxicity Test.      |
|-----|---------------------------------------|-----------------------------------------------------------------------------------|
| 1.  | Test type                             | Static-renewal                                                                    |
| 2.  | Test duration                         | 10 d                                                                              |
| 3.  | Temperature                           | $20 \pm 1^{\circ}\mathrm{C}$                                                      |
| 4.  | Salinity                              | 28 ± 2 ppt                                                                        |
| 5.  | Light quality                         | Ambient Laboratory                                                                |
| 6.  | Light intensity                       | 50 – 100 ft c.                                                                    |
| 7.  | Photoperiod                           | 12L/12D                                                                           |
| 8.  | Test chamber size                     | 1 L glass beakers                                                                 |
| 9.  | Test solution volume                  | 800 L                                                                             |
| 10. | Sediment depth                        | 25 mm (200 mL)                                                                    |
| 11. | Renewal of seawater                   | None, unless needed. If needed, renew 80% of overlying water at 48 hour intervals |
| 12. | Age of test organisms                 | 2-3 weeks                                                                         |
| 13. | # of organisms per test chamber       | 5                                                                                 |
| 14. | # of replicate chambers/concentration | 5                                                                                 |
| 15. | # of organisms per sediment type      | 25                                                                                |
| 16. | Feeding regime                        | None                                                                              |
| 17. | Test chamber cleaning                 | Lab washing prior to test                                                         |
| 18. | Test solution aeration                | Low bubble (~100/minute)                                                          |
| 19. | Overlying water                       | 0.45 µm-filtered seawater, at test salinity                                       |
| 20. | Test concentrations                   | Test sites, reference and Control                                                 |
| 21. | Dilution series                       | None                                                                              |
| 22. | Endpoint                              | Survival                                                                          |
| 23. | Sample holding requirements           | < 8 weeks                                                                         |
| 24. | Sample volume required                | 4 L                                                                               |
| 25. | Test acceptability criteria           | $\geq$ 90% survival in the Control treatment                                      |
| 26. | Reference toxicant results            | Within 2 SD of laboratory mean                                                    |

5/1>

|     | Summary of Test Conditions and Acceptability Criteria for the Mysid<br>(Americamysis bahia) Water Column Toxicity Test. |                                                                 |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|
| 1.  | Test type                                                                                                               | Static non-renewal                                              |  |  |  |  |  |  |  |
| 2.  | Test duration                                                                                                           | 96 hours                                                        |  |  |  |  |  |  |  |
| 3.  | Salinity                                                                                                                | 25-30 ppt <u>+</u> 10 ppt                                       |  |  |  |  |  |  |  |
| 4.  | Temperature                                                                                                             | $20 \pm 1^{\circ}C$                                             |  |  |  |  |  |  |  |
| 5.  | Light quality                                                                                                           | Ambient Laboratory                                              |  |  |  |  |  |  |  |
| 6.  | Light intensity                                                                                                         | 50 – 100 ft c.                                                  |  |  |  |  |  |  |  |
| 7.  | Photoperiod                                                                                                             | 16L/8D                                                          |  |  |  |  |  |  |  |
| 8.  | Test chamber size                                                                                                       | 400 mL beaker                                                   |  |  |  |  |  |  |  |
| 9.  | Test solution volume                                                                                                    | 200 mL                                                          |  |  |  |  |  |  |  |
| 10. | Renewal of seawater                                                                                                     | None                                                            |  |  |  |  |  |  |  |
| 11. | Age of test organisms                                                                                                   | 1-5 days; 24 hour range in age                                  |  |  |  |  |  |  |  |
| 12. | # of organisms per test chamber                                                                                         | 10                                                              |  |  |  |  |  |  |  |
| 13. | # of replicate chambers per concentration                                                                               | 5                                                               |  |  |  |  |  |  |  |
| 14. | # of organisms per concentration                                                                                        | 50                                                              |  |  |  |  |  |  |  |
| 15. | Feeding regime                                                                                                          | daily                                                           |  |  |  |  |  |  |  |
| 16. | Test chamber cleaning                                                                                                   | Lab washing prior to test                                       |  |  |  |  |  |  |  |
| 17. | Test chamber aeration                                                                                                   | If needed to maintain >40% saturation                           |  |  |  |  |  |  |  |
| 18. | Elutriate preparation water                                                                                             | Site water or Clean sea water                                   |  |  |  |  |  |  |  |
| 19. | Test concentrations                                                                                                     | Test sites, and Lab Control                                     |  |  |  |  |  |  |  |
| 20. | Dilution series                                                                                                         | Four concentrations (1, 10, 25, 50, and100%) and a Lab Control. |  |  |  |  |  |  |  |
| 21. | Dilution water                                                                                                          | Natural seawater/artificial seawater                            |  |  |  |  |  |  |  |
| 22. | Endpoints                                                                                                               | % Survival                                                      |  |  |  |  |  |  |  |
| 23. | Sampling holding requirements                                                                                           | < 8 weeks                                                       |  |  |  |  |  |  |  |
| 24. | Sample volume required                                                                                                  | 2L                                                              |  |  |  |  |  |  |  |
| 25. | Test acceptability criteria                                                                                             | $\geq$ 90% survival in the Lab Controls                         |  |  |  |  |  |  |  |

54/54



| South S                | South San Francisco Ferry Terminal Sediment Sample Core Log |              |           |                  |     |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------------|--------------|-----------|------------------|-----|--|--|--|--|--|--|
| Sample Collection Data |                                                             |              |           |                  |     |  |  |  |  |  |  |
| Sample Date:           | 5/22/2018                                                   | Sample Time: | 1850      | Sampler(s):      | DG  |  |  |  |  |  |  |
| Sample ID:             | C                                                           | DU-1-E       | Notes:    |                  |     |  |  |  |  |  |  |
| Northing:              | 206                                                         | 9823.05      | Easting:  | 6018526.53       |     |  |  |  |  |  |  |
| Corrected Mudline      | Depth (ft):                                                 | -9           | T         | ide Height (ft): | 5.4 |  |  |  |  |  |  |
| Target Core Leng       | gth (ft):                                                   | 3.5          | Vibra Cor | 12.5             |     |  |  |  |  |  |  |
| Core Length Recov      | ered (ft):                                                  | 3.5          | Fin       | 3.5              |     |  |  |  |  |  |  |

|                           | Sample Processing Information |               |                                                                                                                                                                                                          |               |    |  |  |  |  |  |  |  |
|---------------------------|-------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|--|--|--|--|--|--|--|
| Process Date:             | 5/22/2018                     | Process Time: | 1850                                                                                                                                                                                                     | Processor(s): | MT |  |  |  |  |  |  |  |
| Penetration Depth<br>(ft) | Color                         | Odor          | Material Description                                                                                                                                                                                     |               |    |  |  |  |  |  |  |  |
| 12.5                      | Dark Grey                     | No Odor       | Dark Gray to Gray Fine Grained Bay Mud. Minor to<br>Abundant Bioclastic Material Present. No Smell/No Sheen.<br>Dense at Base, Loose towards top of Core with lamination<br>of Coarse Silt Topping Core. |               |    |  |  |  |  |  |  |  |
|                           |                               |               |                                                                                                                                                                                                          |               |    |  |  |  |  |  |  |  |

| South S                | South San Francisco Ferry Terminal Sediment Sample Core Log |              |           |                      |     |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------------|--------------|-----------|----------------------|-----|--|--|--|--|--|--|
| Sample Collection Data |                                                             |              |           |                      |     |  |  |  |  |  |  |
| Sample Date:           | 5/22/2018                                                   | Sample Time: |           | Sampler(s):          | DG  |  |  |  |  |  |  |
| Sample ID:             | 0                                                           | DU-1-F       | Notes:    |                      |     |  |  |  |  |  |  |
| Northing:              | 206                                                         | 69772.08     | Easting:  | 6018778.56           |     |  |  |  |  |  |  |
| Corrected Mudline      | Depth (ft):                                                 | -9.2         | Г         | ide Height (ft):     | 2.7 |  |  |  |  |  |  |
| Target Core Leng       | gth (ft):                                                   | 3.3          | Vibra Cor | 12.5                 |     |  |  |  |  |  |  |
| Core Length Recov      | ered (ft):                                                  | 3.3          | Fin       | al Core Length (ft): | 3.3 |  |  |  |  |  |  |

|                           |                      | Sample Proc   | cessing Info                                                                                                                                                                                            | rmation       |    |  |  |  |  |
|---------------------------|----------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|--|--|--|--|
| Process Date:             | 5/22/2018            | Process Time: |                                                                                                                                                                                                         | Processor(s): | MT |  |  |  |  |
| Penetration Depth<br>(ft) | Material Description | ption         |                                                                                                                                                                                                         |               |    |  |  |  |  |
| 12.5                      | Dark Grey            | No Odor       | <ul> <li>Dark Gray to Black Fine Grained Bay Mud. Minor Bioclastic</li> <li>Material Present. No Smell/No Sheen. Dense throughout</li> <li>Core with lamination of Coarse Silt Topping Core.</li> </ul> |               |    |  |  |  |  |
|                           |                      |               |                                                                                                                                                                                                         |               |    |  |  |  |  |

| South S                | South San Francisco Ferry Terminal Sediment Sample Core Log |              |           |                      |     |  |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------------|--------------|-----------|----------------------|-----|--|--|--|--|--|--|--|
| Sample Collection Data |                                                             |              |           |                      |     |  |  |  |  |  |  |  |
| Sample Date:           | 5/22/2018                                                   | Sample Time: | 1450      | Sampler(s):          | DG  |  |  |  |  |  |  |  |
| Sample ID:             | C                                                           | 0U-1-G       | Notes:    |                      |     |  |  |  |  |  |  |  |
| Northing:              | 206                                                         | 9785.78      | Easting:  | 6019100.57           |     |  |  |  |  |  |  |  |
| Corrected Mudline      | Depth (ft):                                                 | -9.1         | Г         | ide Height (ft):     | 0.4 |  |  |  |  |  |  |  |
| Target Core Leng       | gth (ft):                                                   | 3.4          | Vibra Cor | 12.5                 |     |  |  |  |  |  |  |  |
| Core Length Recov      | ered (ft):                                                  | 3.4          | Fin       | al Core Length (ft): | 3.4 |  |  |  |  |  |  |  |

| Sample Processing Information |           |               |                                                                                                                                                           |               |    |  |  |  |  |  |
|-------------------------------|-----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|--|--|--|--|--|
| Process Date:                 | 5/22/2018 | Process Time: | 1450                                                                                                                                                      | Processor(s): | MT |  |  |  |  |  |
| Penetration Depth<br>(ft)     | Color     | Odor          | Material Description                                                                                                                                      |               |    |  |  |  |  |  |
| 12.5                          | Dark Grey | No Odor       | Dark Gray to Gray Fine Grained Bay Mud. Minor to<br>Abundant Bioclastic Material Present. No Smell/No Sheen.<br>Dense at Base, Loose towards top of Core. |               |    |  |  |  |  |  |
|                               |           |               |                                                                                                                                                           |               |    |  |  |  |  |  |

| South San Francisco Ferry Terminal Sediment Sample Core Log |           |              |                     |                           |      |  |
|-------------------------------------------------------------|-----------|--------------|---------------------|---------------------------|------|--|
| Sample Collection Data                                      |           |              |                     |                           |      |  |
| Sample Date:                                                | 5/22/2018 | Sample Time: | 1230 Sampler(s): DG |                           |      |  |
| Sample ID:                                                  | DU-2-A    |              | Notes:              |                           |      |  |
| Northing:                                                   | 206       | 9626.91      | Easting: 6018326.85 |                           |      |  |
| Corrected Mudline Depth (ft):                               |           | -9.4         | T                   | ide Height (ft):          | 0.6  |  |
| Target Core Length (ft):                                    |           | 5.1          | Vibra Cor           | e Penetration Depth (ft): | 14.5 |  |
| Core Length Recovered (ft):                                 |           | 5.1          | Fin                 | al Core Length (ft):      | 5.1  |  |

| Sample Processing Information |           |               |                                                                                                                                  |               |    |  |  |
|-------------------------------|-----------|---------------|----------------------------------------------------------------------------------------------------------------------------------|---------------|----|--|--|
| Process Date:                 | 5/22/2018 | Process Time: | 1230                                                                                                                             | Processor(s): | MT |  |  |
| Penetration Depth<br>(ft)     | Color     | Odor          | Material Description                                                                                                             |               |    |  |  |
| 14.5                          | Dark Grey | No Odor       | – Dark Gray to Black Fine Grained Bay Mud. Minor Bioclasti<br>– Material Present. No Smell/No Sheen. Dense throughout<br>– Core. |               |    |  |  |
|                               |           |               |                                                                                                                                  |               |    |  |  |

| South San Francisco Ferry Terminal Sediment Sample Core Log |                        |              |                                   |                           |      |  |  |
|-------------------------------------------------------------|------------------------|--------------|-----------------------------------|---------------------------|------|--|--|
|                                                             | Sample Collection Data |              |                                   |                           |      |  |  |
| Sample Date:                                                | 5/22/2018              | Sample Time: | 930                               | Sampler(s):               | DG   |  |  |
| Sample ID:                                                  | DU-2-B                 |              | Notes:                            |                           |      |  |  |
| Northing:                                                   | 206                    | 69404.02     | 404.02 <b>Easting:</b> 6018169.36 |                           |      |  |  |
| Corrected Mudline Depth (ft):                               |                        | -4           | Т                                 | ide Height (ft):          | 3.9  |  |  |
| Target Core Length (ft):                                    |                        | 8.5          | Vibra Cor                         | e Penetration Depth (ft): | 12.5 |  |  |
| Core Length Recovered (ft):                                 |                        | 8.5          | Fin                               | al Core Length (ft):      | 8.5  |  |  |

| Sample Processing Information |           |               |                                                                                                                                                      |               |    |  |  |
|-------------------------------|-----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|--|--|
| Process Date:                 | 5/22/2018 | Process Time: | 930                                                                                                                                                  | Processor(s): | МТ |  |  |
| Penetration Depth<br>(ft)     | Color     | Odor          | Material Description                                                                                                                                 |               |    |  |  |
| 12.5                          | Dark Grey | No Odor       | Dark Gray to Black Fine Grained Bay Mud. Minor to<br>Abundant Bioclastic Material Present. No Smell/No Sheen<br>Dense at Base, Loose at Top of Core. |               |    |  |  |
|                               |           |               |                                                                                                                                                      |               |    |  |  |

| South San Francisco Ferry Terminal Sediment Sample Core Log |                        |              |                           |                           |      |  |  |
|-------------------------------------------------------------|------------------------|--------------|---------------------------|---------------------------|------|--|--|
|                                                             | Sample Collection Data |              |                           |                           |      |  |  |
| Sample Date:                                                | 5/22/2018              | Sample Time: | 830 Sampler(s): DG        |                           |      |  |  |
| Sample ID:                                                  | DU-2-C                 |              | Notes:                    |                           |      |  |  |
| Northing:                                                   | 206                    | 59384.28     | 84.28 Easting: 6018443.75 |                           |      |  |  |
| Corrected Mudline Depth (ft):                               |                        | -4.7         | Г                         | ide Height (ft):          | 5.1  |  |  |
| Target Core Length (ft):                                    |                        | 7.8          | Vibra Cor                 | e Penetration Depth (ft): | 12.5 |  |  |
| Core Length Recovered (ft):                                 |                        | 7.8          | Fin                       | al Core Length (ft):      | 7.8  |  |  |

| Sample Processing Information |           |               |                                                                                                                                           |               |    |  |  |
|-------------------------------|-----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|--|--|
| Process Date:                 | 5/22/2018 | Process Time: | 830                                                                                                                                       | Processor(s): | MT |  |  |
| Penetration Depth<br>(ft)     | Color     | Odor          | Material Description                                                                                                                      |               |    |  |  |
| 12.5                          | Dark Grey | No Odor       | Dark Gray to Black Fine Grained Bay Mud. Minor Bioclastic<br>Material Present. No Smell/No Sheen. Dense at Base,<br>Loose at Top of Core. |               |    |  |  |
|                               |           |               |                                                                                                                                           |               |    |  |  |

| South San Francisco Ferry Terminal Sediment Sample Core Log |           |              |                     |                           |      |  |
|-------------------------------------------------------------|-----------|--------------|---------------------|---------------------------|------|--|
| Sample Collection Data                                      |           |              |                     |                           |      |  |
| Sample Date:                                                | 5/22/2018 | Sample Time: | 1030                | Sampler(s):               | DG   |  |
| Sample ID:                                                  | DU-2-D    |              | Notes:              |                           |      |  |
| Northing:                                                   | 206       | 9683.32      | Easting: 6018164.08 |                           |      |  |
| Corrected Mudline Depth (ft):                               |           | -9.0         | Г                   | ide Height (ft):          | 2.3  |  |
| Target Core Length (ft):                                    |           | 3.5          | Vibra Cor           | e Penetration Depth (ft): | 12.5 |  |
| Core Length Recovered (ft):                                 |           | 3.5          | Fin                 | al Core Length (ft):      | 3.5  |  |

| Sample Processing Information |           |               |                                                                                                                                                                              |               |    |  |  |
|-------------------------------|-----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|--|--|
| Process Date:                 | 5/22/2018 | Process Time: | 1030                                                                                                                                                                         | Processor(s): | MT |  |  |
| Penetration Depth<br>(ft)     | Color     | Odor          | Material Description                                                                                                                                                         |               |    |  |  |
| 12.5                          | Dark Grey | No Odor       | Gray to Dark Gray Fine Grained Bay Mud. Abundant<br>Bioclastic Material Present. No Smell/No Sheen. Dense<br>throughout Core with lamination of Coarse Silt Topping<br>Core. |               |    |  |  |
|                               |           |               |                                                                                                                                                                              |               |    |  |  |