Zero Emission Fleet Study Update

WETA Board of Directors May 19, 2022

WETA

aurora marine design

Study Goals

"Develop a plan to transition ferry operations on San Francisco Bay to zero-emission vessels"

How much power do we need? Where will it come from? When do we need it? How much will it cost? How do we pay for it?

Emphasis on the use of electric propulsion systems and resolving the technical and regulatory barriers for the shore side infrastructure

Study Responsibilities

Stakeholders Engaged

Stage 3 Blueprint & Strategy

Lay out an actionable path to progress to procurement, design and delivery of electrified ferry service

Workflow

Develop solutions and assess their attributes and drawbacks to select optimal direction

Stage 1 Baselining

Collect and process data on operations, vessels and terminals to define their constraints and opportunities

Study Schedule

ARUP Shoreside

Aurora – Vessel Analysis

Study Schedule

ARUP Shoreside

Fleet Electrification Schedule

2035

Conservative Implementation

Diesel Vessel

Battery Electric Vessel

TBD (Future Technology, Alternative Fuel, Hydrogen)

Fleet Electrification Schedule

Optimal Implementation

40 35 30 25 No. of Vessels 20 F 15 10 5 0 2025 2030 2035

Conservative Implementation

Battery Electric Vessel

TBD (Future Technology, Alternative Fuel, Hydrogen)

OPTIMAL TIMELINE IS THE BASIS FOR OUR ANALYSIS

Diesel Vessel

Stage 2 - Key Factors

aurora marine design

Constraints (established in Stage 1)

- Ridership demand is based on existing data and growth projections
- Attempt to mimic current service profiles to the extent possible
- Peak hourly (i.e. commute times) ridership demand drives the vessel sizing and power requirements
- SFFB is the common hub for most routes and will require the most attention

Charging Assumptions

- Two Charge Levels Small Vessel (~1-1.5 MW) and Large Vessel (~4-5 MW)
- Charging occurs at all locations possible during onloading/offloading

Stage 2 - Optioneering Workflow

aurora marine design

Stage 2 - Optioneering Workflow

aurora marine design

Vessel Feasibility

Phase 3 – Long Run Central Bay

Phase 1 - Inner Central Bay

Phase 2 – Central Bay

Phase 4 – Long Runs

aurora marine design

Feasible with Current Vessel Technology
Feasible with Current Vessel Technology - Operational Changes Required
Feasible with Current Vessel Technology - Significant Operational Changes Required
Not Currently Feasible – TBD Future Technology Required

Energy Demand Projections

aurora marine design

Current Analysis Work

aurora marine design

- Charging
- Mooring and Docking
- Float Modifications
- Vessel Configurations

Arup – Shoreside Analysis

Shoreside Analysis

ARUP

Part 1: Baselining phase

- Analyzed the local grid context using publicly available data
- Identified potential constraints

Part 1: Baselining Phase

Predicted ZEV Electrical Peak Demand & Batteries at Each Terminal vs Grid Capacities

ARUP

*Alameda Main Street does not have predicted peak demands because there is no anticipated charging at this terminal

Part 1: Baselining Phase

Predicted ZEV Electrical Peak Demand & Batteries at Each Terminal vs Grid Capacities

*Alameda Main Street does not have predicted peak demands because there is no anticipated charging at this terminal

Part 1: Baselining Phase

Predicted ZEV Electrical Peak Demand & Batteries at Each Terminal vs Grid Capacities

ARUP

Phase 1 Shoreside Feasibility

ARUP

*Ferry building – minimal upgrades suffice in this first phase while only the highlighted routes are electrified

Phase 2 Shoreside Feasibility

ARUP

Phase 3 Shoreside Feasibility

Part 2: Optioneering Phase

Part 2: Optioneering Phase

Current blocker:

Grid Capacity uncertainty and optimized, balanced solution

Team Solution (Options):

- 1. Upgrade grid to meet capacity needs
- 2. Interconnect battery energy storage
- 3. Provide load management

Grid capacity meets electrical demand.

Grid capacity does not meet increased electrical demand in most terminal locations.

ARUP

Optioneering phase: Arup is developing and evaluating solutions to meet increased electrical demand.

Grid capacity meets electrical demand.

Grid capacity does not meet increased electrical demand in most terminal locations.

ARUP

Scenario 1: Meet increased demand entirely through grid upgrades in collaboration with utilities.

Grid capacity does not meet increased electrical demand in most terminal locations.

Scenario 2: Meet increased demand through grid upgrades and battery storage.

ARUP

Grid capacity does not meet increased electrical demand in most terminal locations.

Scenario 2: Meet increased demand through grid upgrades and battery storage.

ARUP

SCENARIOS

WETA – Progress Update

WETA Implementation Progress

- 2020 WETA was awarded a grant through TIRCP (Transit and Intercity Rail Capital Program) to build (1) 99-149 passenger all electric vessel and infrastructure
- 2022 WETA applied for an additional grant through TIRCP to build (1) 99-149 passenger all electric vessel and related infrastructure
- 2022 WETA applied for FTA funds to build (1) 99-149 passenger all electric vessel
- If awarded, this would provide WETA with (3) 99-149 passenger vessels to serve phase 1 of implementation.
- There is also discussion of finding funding for a possible 4th vessel

WETA Implementation Progress

- Engaged with SFPUC and the Port of San Francisco to analyze grid upgrades to serve the Downtown San Francisco Terminal and other charging opportunities along the waterfront
 - Includes examination of potential near term (temporary) upgrades while more complex solutions develop
- Engaged with San Francisco County Transportation Authority (SFCTA) for implementation of zero emission Treasure Island Ferry Service
 - Defining roles and responsibilities
 - Service planning and fare analysis
 - Coordination with SFPUC for electrification of Treasure Island Terminal
- Coordinating with Alameda Municipal Power to develop preliminary plans and cost estimates to electrify Alameda ferry facilities
 - Includes pre-engineering studies
 - Including Central Bay Operations and Maintenance Facility Expansion preliminary work in FY23 capital budget

Questions