

Presentations for October 7, 2021 Board of Directors Meeting

Item 8: WETA Zero Emission Study Update

Zero Emission Fleet Study Update

Study Goals

"Develop a plan to transition ferry operations on San Francisco Bay to zero-emission vessels"

How much power do we need?
Where will it come from?
When do we need it?
How much will it cost?
How do we pay for it?

Emphasis on the use of electric propulsion systems and resolving the technical and regulatory barriers for the shore side infrastructure

Study Responsibilities

Stakeholders Engaged

Workflow

Stage 1Baselining

Collect and process data on operations, vessels and terminals to define their constraints and opportunities

Stage 2 Optioneering

Develop solutions and assess their attributes and drawbacks to select optimal direction

Stage 3 Blueprint & Strategy

Lay out an actionable path to progress to procurement, design and delivery of electrified ferry service

Study Schedule

Vessel Side

ARUP Shoreside

Vessel Side Progress Update

Global Zero Emission Ferry Fleet *

* Vessels currently in service based on readily available information

Battery Electric Vessels

Energy Sources**

- All propulsion options have strengths and weaknesses
- Careful route definition and analysis is required to determine the best match
- Battery Electric is initial focus per the CEC Study
- Hydrogen Electric provides a zero emissions "bridging" solution where Battery Electric is impractical

Vessel Emissions

Overall Energy Efficiency

Range

High Speed Capability

Safety

Technology Maturity

Vessel Cost

Vessel Maintenance Cost

Infrastructure Cost

"Fuel" Cost

^{*} Internal Combustion Engine

^{**} This chart is a general representation of propulsion tradeoffs which may differ per geographical location

Data Collection

Vessel Data Collected

- Detailed Vessel Metrics
- Performance characteristics, speed vs power vs weight vs fuel burn
- Viability of Electric Conversion:
 - Remaining Lifespan
 - Structural Design Limits (How much weight and space margin do we have to install this equipment?)

Route Data Collected

- Develop a database of existing and planned routes. For each route, determine:
 - Load Profile
 - Daily Timetables
 - Route Constraints
 - Expected Growth
- Assess operational profiles for energy usage, speed sensitivity, and timetable sensitivity

WETA Ferry System Analysis

WETA's complex service involves A LOT OF VARIABLES!

- How much energy is currently consumed on each route segment and what is the sweet spot for speed vs. power consumed vs passengers moved?
- What is the impact of extended dockside charging time?
- Is interlining possible or practical during a transition to electric?
- What impact does speed vs passenger capacity have on power consumed?

This required the development of some WETA specific RAPID ANALYSIS TOOLS

Route Analyzer Tool

Create a user-friendly tool to rapidly configure and optimize energy used on each route

Enables user to:

- Build a route from a dropdown library of route segments
- Select a vessel (current fleet and user defined)
- Adjust route parameters (speed, dock maneuverability, leg distances)

Output:

- Energy used
- Battery sizing
- Charging power required at each stop
- Transportation Efficiency metrics
- Diesel used for calibration

10%	200										
0.0 20.											
	Time (min)										
	— Battery SOC — Power Draw Start Position	Downtown									
					Outputs					$\overline{}$	
					Outputs			Battery			
						Propulsive	Fuel	Consumpti		í l	
						Power	consump	on	Cumulati	í l	
			Length	Speed	Time	Required	tion	(Electric)	ve Time	Time	SOC
		Route Segment	mi	kts	min	kW	gal	kwh	min		
		-	-	-	-	-	-	-	0.0	14:00	80%
Leg 1	Total Distance: 6.4 mi	Leave Downtown	0.1	3.0	3.0	298	1.1	18.6	3.0	14:03	79%
	Unrestricted Transit Speed 26 kts	Unrestricted Transit	5.0	26.0	10.0	1851	21.1	350.6	13.0	14:13	68%
Oakland	Inner Harbor Transit Speed 10 kts	Inner Harbor Transit	1.2	10.0	6.3	285	2.3	37.2	19.3	14:19	66%
Odklalia	Number of Passengers 250	Enter Oakland	0.1	3.0	3.0	298	1.1	18.6	22.3	14:22	66%
										ш	
		Subtotal	6.4		22.3		25.6	424.9	22.3	14:22	
Docked-	Time Docked 5 min ☐ Charging ✔ Under Power At	Docked	0.0	0.0	5.0	171.5	1.2	19.2	27.3	14:27	
Oakland		Docked- Charging						0.0			
		Subtotal	0.0		5.0		1.2	19.2	27.3	14:27	65%
<u>Leg 2</u>	Total Distance: 0.9 mi	Leave Oakland	0.1	3.0	3.0	298	1.0	18.6	30.3	14:30	65%
	Inner Harbor Transit Speed 10 kts	Inner Harbor Transit	0.7	10.0	3.5	285	1.1	21.1	33.8	14:33	64%
Alameda Main Street										14:33	64%
	Number of Passengers 250	Enter Alameda Main Stre	0.1	3.0	3.0	298	1.0	18.6	36.8	14:36	63%
		61111							20.0	44.00	
5 1 1	Time Docked 10 min ♥ Charging ♥ Under Power At	Subtotal	0.9		9.5		3.1	58.2	36.8	14:36	
Docked- Alameda Main Street	Time Docked 10 min ✓ Charging ✓ Under Power At	Docked Docked- Charging	0.0	0.0	10.0	171.5	2.3	38.4 -480.0	46.8	14:46	
Midifieud Widifi Street		Subtotal	0.0		10.0		2.3	38.4	46.8	14:46	78%
Leg 3	Total Distance: 5.7 mi	Leave	0.1	3.0	3.0	298	1.0	18.6	49.8	14:49	77%
LCSO	Inner Harbor Transit Speed 10 kts	Inner Harbor Transit	0.5	10.0	2.6	285	0.8	15.5	52.5	14:52	77%
	Unrestricted Transit Speed 26 kts	Unrestricted Transit	5.0	26.0	10.0	1851	20.6	350.6	62.5	15:02	65%
Downtown	Number of Passengers 250	Enter Downtown	0.1	3.0	3.0	298	1.0	18.6	65.5	15:05	65%
		Subtotal	5.7		18.6		23.4	403.2	65.5	15:05	
Docked-	Time Docked 10 min ☑ Charging ☑ Under Power At	Docked	0.0	0.0	10.0	171.5	2.3	38.4	75.5	15:15	
Downtown		Docked- Charging						-480.0			
		Subtotal	0.0		10.0		2.3	38.4	75.5	15:15	79%
		Trip Summary:	13.0				58.0	982.4	75.5	15:15	79%

Fleet Analysis Tool

Rapidly determine the power required at each terminal

Receives inputs directly from the Route Analyzer tool

- Contains a graphical schedule builder
- Automatically updates real time systemwide energy demands at any given minute
- Exports an energy demand profile at each terminal to support shoreside infrastructure analysis

Shoreside Progress Update

Shoreside Overview

Baselining – Terminal Assessment

Existing Electrical Connections and Design

Excluding central bay all terminals predicted to require substantive grid connection upgrades and the addition of resilience measures for transition. These will be costly

Local Grid Context

High variability in the grid context of the different terminals. In particular Downtown is of high concern.

Space constraints assessment

Opportunities for solar, batteries and back up power reserves are being assessed by evaluating space availability

Baselining – Terminal Assessment

Preliminary Roadmap

- Initial analysis points to four phases of implementation
- These will be refined during the next stage of the project

Phase 1 - Inner Central Bay

TI, Mission Bay, Pier 41, SFFB

Phase 2 – Central Bay

Oakland, Alameda, Berkeley

Phase 3 – Long Run Central Bay

Harbor Bay, South SF, Richmond

Phase 4 – Long Runs Vallejo / Carquinez / Redwood City

Next Steps

Next Steps

Vessel Side

ARUP Shoreside

Next Steps – Iterative Optioneering & Optimizing

Stakeholders Input

Utilities

Regional Agencies

Technology Providers

Scenario Development

Technical Inputs

Ferry Parameters

Terminal Parameters

Routing Parameters

Results for each scenario

Economic Performance

Emission Performance

Quality of Service Provision

Transportation Efficiency

Technical details & phasing

Next Steps – Iterative Optioneering & Optimizing

Answers to our study questions

How much power do we need and where?
What is the phasing for implementation?
How much will it cost year by year?
How do we pay for it?

Thank You